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Abstract

As the world becomes more interconnected through the use of the Internet, it is
imperative organizations take the proper steps to ensure the security of their networks is
maintained. Organizations can no longer isolate their networks from the rest of the world
and remain competitive. An organization willing to compete in the world market must
take the necessary precautions to protect its network, the systems located on those
networks, and its mission critical data. There are performance issues associated with the
use of access control lists (ACL); however, if ACLs are implemented properly and
periodically reviewed, a secure network can be attained.

This research attémpts to determine how the growth of an ACL affects packet flow
and router CPU consumption, and identify the specific length of an access control list,
such that overall router performance is degraded. Additionally, the packet validation
model developed for this thesis is used to provide insights into how access control lists
can be optimized.

To accomplish the research goals, the ACL Model was built using BONeS Designer.
The ACL Model simulated the packet validation component of a network router.
Simulations showed packet latency grew linearly as the length of an ACL grows.
Optimization efforts showed improvements in the mean packet latency by ordering the
ACLs based on a frequency analysis of the incoming data packets and the proper use of

ACL terminator entries.
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A MODELING AND SIMULATION APPROACH TO ANALYZE THE
WORKLOAD ASSOCIATED WITH THE GROWTH OF NETWORK ROUTER

ACCESS CONTROL LISTS

1. Introduction

1.1 Motivation

As organizations race to make their presence known on the Internet, it is no longer
sufficient to rely on physical security (a locked door and safe) to protect their information
and networks. Organizations need to look towards high technology solutions to protect
their networks, the systems located on those networks, and mission critical data. Without
implementing various forms of security, the integrity of an organization’s data cannot be
assured.

1.2 Background

Any organization or person using the Internet is vulnerable to attack by malefactors.
An organization’s computer network can be attacked in a variety of ways, such as
smurfing, IP spoofing, and denial of service attacks. For a network manager, a router is
an important and beneficial tool in confining a malevolent attack. By periodically
analyzing incoming packets, network activity and anticipating the various types of
attacks, the network manager can modify the router’s filtering procedures; thereby

curbing undesired network activity. Implementing tighter security at the outer fringes of a




network can aid in the overall security of an organization’s systems and data. Access
control lists are an effective means of controlling the flow of packets through a network.

Access control lists (ACLs) are known by many different names but they can all be
reduced to a single objective — protect the systems and data located on an organization’s
network. Information about how ACLs are implemented is readily available to a certain
extent, but published data in regards to router performance figures are unavailable.
Various articles have alluded that large access control lists affect the amount of CPU
consumption on each interface, but none give any indication as to an exact processing
time figure [Har98] [Mor98].

There are many reasons for using access control lists, such as restricting the contents
of routing updates, providing efficient traffic flow control, or to decide which types of
traffic are forwarded or blocked at the router interface based on an organization’s routing
policy [Cis98a]. However, the most important reason is the implementation of a security
policy. ACLs provide a basic level of security for accessing an internal network; if this
step is not done, all packets arriving at the network’s border will flow right through.
Unchecked, unscrupulous Internet users may send harmful packets into an organization’s
network. Should a harmful packet be permitted into the network, it may cause the loss of
data.

When implementing ACLs, they should be associated with “firewall” routers located
at the perimeter of the network being protected. ACLs are not only used to control traffic
between internal and external networks; they are also beneficial if employed properly
within an internal network. In an internal network, ACLs can be configured to prevent

one department from gaining access to another department’s information.




1.3 Research Problem

The U.S. Air Force (USAF) and the Department of Defense (DoD) administrative
systems are largely dependent on the continued operation of the commercial Internet, and
are vulnerable at the weakest link in the communications chain. Coupling the relative
ease, low cost and anonymity with which an adversary could mount an attack against the
nation’s systems, the potential for a degradation of the operational capacity of the DoD
administrative systems quickly escalates. To effectively utilize an ACL, it is important to
understand how the structure and growth of an ACL can influence the amount of
processing accomplished to validate each packet arriving at the router interface. The
unavailability of data in identifying the point where router CPU consumption is degraded
to an unreasonable point based on the length of the assigned ACL prompted this research
effort.

The design portion of this research effort is to model the packet validation process
occurring within a network router with an access control list applied. The primary goal is
to determine how the growth of an ACL affects packet flow and router CPU
consumption, and identify the specific length of an access control list, such that overall
router performance is degraded. The secondary goal is to provide insights into how
access control lists can be optimized.

1.4 Objectives
The following objectives will be met during this research effort:

e Accomplish a workload study varying the length of network router access control
lists used to keep out traffic from untrustworthy sources.
e Identify a universal set of rules to follow when creating an access control list used to

optimize network router CPU performance.




To meet the objectives described above, it will be necessary to utilize network-
modeling techniques to model a network router and gather information from sources
responsible for maintaining router ACLs.

1.5 Approach

The purpose of developing the Access Control List (ACL) Model” is to simulate the
access control list packet validation process occurring within a network router. Real
world ACLs and Internet Protocol (IP) packet header data are collected to ensure the
model’s fidelity while utilizing real world data. After the data is collected, an analysis is
accomplished to identify the role the length of an ACL plays on router CPU consumption
and how the ACLs can be optimized to increase overall system performance (e.g.,
minimize mean packet processing times).
1.5.1 Model Development

Using available tools, the ACL Model is designed to simulate the packet validation
process occurring within a network router. The simulation tool, BONeS Designer,
provides the capability of mimicking the flow of IP packet headers through the assigned
ACL. Once the ACL Model is designed, various tests are accomplished in an attempt to
validate the model. The test cases use test data and subsets of real world IP packet
headers.
1.5.2 External Input Data

Real world ACLs and IP packet header data are collected to ensure the model’s
fidelity. The IP headers are obtained from the Air Force Institute of Technology (AFIT)

and the Defense Information Systems Agency (DISA). Access to this data also affords

* ACL Model refers to the model designed in BONeS Designer for this thesis effort.
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the opportunity to accomplish a frequency analysis of the incoming data, providing the
information needed to determine how an ACL can be optimized.
1.5.3 Data Analysis

Data is collected throughout the simulation process. Upon completion of the
simulations, all data collected is analyzed to determine packet latency and identify the
role the length of an ACL plays on router CPU consumption. The results of the ACL

| optimization efforts for the AFIT and DISA data sets are be examined. Based upon this

analysis, a set of guidelines to follow in administering ACLs is provided. A generic set of
guidelines will also be created for any system administrator to follow when creating a
new ACL; these guidelines are designed to increase overall router performance.
1.6 Scope

In this research, the design and implementation of an ACL Model is accomplished.
Important research issues examined are as follows:

e the basic capabilities of the ACL checking facility in a network router; specifically,
what processing requirements are needed for Extended IP Access Control Lists,

e the frequency analysis of the real world IP packet header data; specifically, the
identification of the addresses most commonly received and the percentage of each
type of protocol received,

e the optimization of the access control lists provided by DISA and AFIT, along with
the creation of a set of generic techniques to follow in the creation of ACLs , and

e an analysis of the resultant data from the simulations in an attempt to identify a point

where an ACL becomes too long and system performance is degraded.
1.7 Thesis Presentation
This thesis is divided into six chapters. Chapter 2 presents background information

relevant to this thesis. In particular, it covers what an access control list is and its various




forms. Chapter 3 discusses the methodology used to develop the ACL Model. Chapter 4
describes the design of the ACL Model, including parameters and model operation.
Chapter 5 presents an analysis of data collected during the simulations using the ACL
Model, specifically identifying performance issues and a set of guidelines to follow in the
development of an ACL. Finally, Chapter 6 recaps the efforts and results of this thesis,
identifies possible inadequacies of the model, provides areas of model improvement and

an avenue for future research.




2. Literature Review

2.1 Introduction

In this literature review, two broad definitions of an access control list are provided.
In addition, topics relating to ACLs, such as how ACLs are used and their various forms
are discussed. Next, the importance of protecting information systems is discussed and
what exactly the systems are being protected from. To conclude this secﬁon, a subset of
some of the risks associated with being connected to the Internet are also covered,
focusing specifically on several forms of attacks designed to disrupt service or cause
problems in general for an organization.
2.2 Access Control Lists Defined

Access control lists, also known as ACLs or access lists, can all be decomposed to a
single function — protect the data and systems located on an organization’s network.
ACLs can take on two different forms. The first type of ACLs, not covered in this
review, are those associated with operating systems. Within an operating system ACLs
are configured to control file and directory access; the lists reflect an organization’s desire
to restrict access to information based on an individual’s or group’s need to know. The
second form of ACL refers to access control lists associated with network routers, located
on the outer edges of an organization’s network. The next few sections delve into the
specifics of various types of network ACLs and how they compare with one another.
2.3 Standard/Extended Internet Protocol ACLs

In general, access control is an all-encompassing phrase, detailing the mechanisms
and policies restricting access to networking resources. Central to most access control
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mechanisms are ACLs; they are the basis for determining packet authorization.
Authorization is considered the process by which an individual packet is permitted to
gain access to the network; if a packet is denied at the gateway, it is sent to the “bit
bucket.”

At the network level, ACLs are used to control the flow of packets into the
network. ACLs will not turn a network router into a full-fledged firewall; however,
ACLs are an effective tool in controlling network traffic [Mor98].

2.3.1 What are Access Control Lists?

There are many different types of access control lists, refer to Appendix A Table 19
for a list of supported protocols and their designated range of numbers. For this research
effort, emphasis is placed on numbered Extended IP Access Control Lists; however, this
section discusses the differences between standard IP ACLs and Extended IP ACLs.

Access control lists are composed of a group of statements; each statement in the list
defines a pattern found in an Internet Protocol (IP) packet or any other type of protocol
packet. In order for an ACL to be of any benefit, it must first be loaded into the
appropriate router and then assigned to an interface. A router can have multiple interface
modules, each of which “connect the router to physical networks (both local and wide
area)” [Har98]. Each interface can have one assigned ACL for each type of protocol
routed through the interface. For example, if an interface is configured to receive
Extended IP and Ethernet packets, two ACLs can be assigned to the applicable interface.

As packets arrive at the router interface, the ACL is checked from top to bottom for a
matching entry. The extent of the packet validation process is based upon the type of

ACL assigned. If a standard ACL is utilized, an incoming IP packet’s source address is




the only field used for matching purposes (examples of standard IP ACLs can be viewed
in Appendix A). Standard ACLs are not designed to look at the incoming packet’s
session layer protocol. On the other hand Extended IP ACLs, as their name implies, look
at a larger set of fields within an IP packet header. Extended IP Access Control Lists use
source and destination addresses for matching operations, and session layer protocol
information for a finer granularity of control. Finally, if the session layer protocdl is of
the type TCP or UDP, further filtering can be accomplished by placing controls on the
destination port address (see A.2). Overall, the fate of each packet is decided based on an
organization’s security policy.

Any organization’s operating temperament can be gleaned from how it has defined its
access control lists. The spectrum of personalities range from the paranoid organization
(trust no one) to the trusting. The paranoid company believes the only reason someone
would want access to its network would be to cause damage or steal product data;
therefore, the paranoid company decides to deny all external access to its network. bn
the other hand, the trusting organization permits virtually all traffic into its internal
network. In practice the trend appears to be a combination of the two styles.
Organizations can decide, based on their security policies, which packets to permit or
deny. In the Department of Defense, the mission of each organization determines the
filtering policies imposed by the access control lists assigned to its router interfaces.

For the organizations placing themselves in the middle of the spectrum and using a
combination of the permit and deny strategy, there are sevéral combinations possible.

Two combinations covered here are the following, “Deny all while permitting authorized




~users” and “Permit all while denying malefactors.” Tables 1 and 2 identify the pros and

cons associated with each policy strategy.

Table 1. Deny All While Permitting Authorized Users

PROS

e This policy is ideal for an organization with a well-defined user set.
e Overall system security can be maximized under this policy.

CONS

e ACL maintenance can be difficult and time consuming for an organization with a
large number of remote users.

e It is difficult to identify all authorized users.

e A company attempting to transact E-Commerce over the Internet can’t possibly know
all of its customers or potential customers.

Table 2. Permit All While Denying Malefactors

PROS

e This policy allows for the widest access to the network.
o University setting
e Customer base

CONS

e The amount of time required to stay abreast of threats can be extremely high.
e Based on the amount of activity, the number of identified malefactors can be
large; therefore, maintenance of the ACL will be greater.
e An organization needs to identify a reliable source responsible for identifying
malefactors (e.g., CERT — Computer Emergency Response Team).
e It is difficult to prove the identified malefactor is in fact the perpetrator or an
innocent bystander who was used by a hacker.
o Inputs from the CERT could arrive too late.

In Figure 1, a short access control list is displayed; line one tells the router to deny IP

packets with a destination IP address of 109.90.20.13. The second line of the example

access-list 101 deny ip 0.0.0.0 255.255.255.255 109.90.20.13 0.0.0.0
access-list 101 permit tep 0.0.0.0 255.255.255.255 109.90.20.13 0.0.0.0 eq 80
access-list 101 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

Figure 1. Samples from a Numbered Extended IP ACL Entries
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permits TCP packets from any address only if the packets are destined for port (80) of
host 109.90.20.13. All other IP packets desiring access into the network are denied, per
line three. The last line in the configuration (using the deny keyword) can be left off,
since IP ACLs implicitly deny all other access; this feature captures all packets (IP,
ICMP, TCP and UDP) not explicitly denied or permitted by the ACL. Further examples
of Extended IP access lists can be found in Appendix A.

Up to this point ACLs have only been depicted as being used to filter incoming
traffic; however, ACLs can also be used to control how packets originating within a
network are processed. The need for outbound ACLs can be justified by an
organization’s security policy; the lists can be designed to prevent employees from
wasting company time by incessantly “surfing” the Internet or completing illegal
transactions. from within the company’s network.

According to Peter Morrisey, a network systems programmer at Syracuse University,
access control lists do exact a toll on router performance. Morrisey also alludes to the
fact that a router has to “work harder” as ACLs grow [Mor98]. However, the relationship
between the length of an ACL and the performance of a router has not been characterized,
or at least published in open sources.

2.4 Reflexive and Dynamic Access Control Lists

Up to this point, the only types of ACLs mentioned were the standard/Extended
ACLs. Standard ACLs are relatively easy to work with; their format is always the same
(there are only so many ways you can create a legal ACL statement) and the size of the
ACL is static. The varying size of the reflexive and dynamic access control lists provides

an interesting twist to the standard ACL format. Instead of utilizing numbered ACLs,
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reflexive access control lists can only be defined with Extended Named IP Access
Control Lists. In Figure 1 the entries depicted a numbered ACL (access-list 101). A
reflexive ACL assumes the following form (where the ACL is given a name such as

teptraffic, versus using a numeric designator):

reflexive IP access list tcptraffic

2.4.1 Reflexive Access Control Lists

Reflexive ACLs provide the ability to filter network traffic at a router, based on the
packet’s session-layer information; in particular, reflexive ACLs are only available for
TCP and UDP sessions. Reflexive ACLs are very similar in construét as standard ACLs.
Reflexive ACLs contain condition statements defining criteria for permitting IP packets.
The processing of a Reflexive ACL is also the same as standard ACLs; the entries are
evaluated in order, and when a match occurs, no more entries are evaluated.

There are a couple of notable differences from other types of ACLs. Reflexive ACLs
contain only temporary entries; these entries are automatically created when a new TCP
or UDP session begins, and the entries are removed when the session ends. Reflexive
ACLs are not applied directly to an interface, but are nested within an Extended Named
IP Access Control List [Cis98b].

The reflexive entries are generated when a new IP ﬁpper-layer (TCP/UDP) session is
initiated from within the network [Cis98b]. As a packet from a new session leaves the
network, the access control software generates a temporary entry within itself. The
temporary ACL entry is designed to permit all traffic associated with the newly created IP
session, but will not permit traffic to enter the network if the traffic is not part of the

session.
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A temporary ACL entry can be terminated in one of three ways for TCP sessions.
The entry is removed five seconds after two TCP packets with the FIN bit set are detected
(the FIN bit is located in the TCP header). Termination of the session occurs
immediately after matching a TCP packet with the RST (reset) bit toggled in the packet
header. Or, the entry is removed after a period of inactivity (the time-out period is set by
the system administrator).

Reflexive ACLs make spoofing more difficult, since more fields within each packet
must be matched before the packet is permitted to pass through the router. In addition,
session filtering uses temporary filters, which are removed when a session is over, thus

limiting a hacker’s window of opportunity.

Figure 2 on the following page depicts a Reflexive ACL. The first seven lines
represent entries in an Extended Named IP ACL. Line six is known as the outbound
ACL; its primary responsibility is to evaluate all traffic leaving the network via the
assigned interface, identifying packets from newly created sessions. Line seven permits
all outbound TCP traffic and creates a new ACL named tcptraffic (when a new session
has been identified). The last two lines in Figure 2 represent the temporary Reflexive
ACL and the temporary entry within tcptraffic; there can be more than one entry. If there
are two or more sessions initiated, each session will have a unique entry in the tcptraffic

access control list.
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1. Before a TCP Session has been initiated.

Extended IP access list inboundfilters
permit bgp any any

permit eigrp any any

deny icmp any any

evaluate tcptraffic

Extended IP access list outboundfilters
permit tcp any any reflect tcptraffic

2. Added to ACL above after Telnet session initiated.

Reflexive IP access list tcptraffic
permit tcphost 172.19.99.67 eq telnet host 192.168.60.185 equal 11005

Figure 2. Sample Reflexive ACL for an External Interface

2.4.2 Dynamic Extended Access Control Lists

Dynamic Extended IP Access Control Lists grant access per user to a specific source
or destination host through a user authentication process. In essence, a user can be
afforded access through a router dynamically, without compromising security.
2.4.2.1 Lock-and-Key ACLs

The Lock-and-Key is another security feature designed to dynamically filter IP traffic.
Similar to reflexive access control lists, Lock-and-Key is configured using IP Extended
Named ACLs and can be used in conjunction with other ACL formats. The Lock-and-
Key security feature is generally used by an organization wanting to allow a specific
remote user or group of users to be able to access the organization’s internal network. In
this example, remote users Telnet to théir organization’s network router from IP address
172.18.21.2 (refer to Figure 3). Lock-and-Key automatically attempts to authenticate the
user. Upon successful authentication, the user is logged out of the Telnet session and the

second statement in the ACL is activated.
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access-list 101 permit tcp any host 172.18.21.2 eq telnet

access-list 101 dynamic testlist timeout 120 permit ip any any

Figure 3. Sample Lock-and-Key ACL

Unlike Reflexive ACLs, the dynamic ACL statément is always present in the ACL. All
bf the packets generafed by the user pass through the newly created hole in the router. A
flaw of the Lock-and-Key ACL is the fact that, when the remote user is finished with the
session and logs out, the hole remains in the router until the ACL entry expires or it is

physically removed by the system administrator [Cis98c].

2.4.2.2 Context Based Access Control

Another example of software dynamically creating access ports within a firewall is
Context Based Access Control (CBAC). CBAC is capable of filtering TCP and UDP
packets, based on application-layer protocol session information. As long as a session is
initiated from within the protected network, all packets related to the established session
and arriving from outside of the network are permitted. Similar to Lock-and-Key, CBAC
is capable of blocking traffic from sessions that originate outside of the network. When a
packet arrives at the router gateway from outside of the network, the packet is inspected
to ensure it belongs to an active session [Cis95].

CBAC inspects all outgoing packets to deterrrﬁne if a new session is being initiated.
If a new session is initiated, the first outgoing packet triggers CBAC to create a temporary
entry in the access control list. The new entry allows returning traffic destined for an

active session to pass through the firewall.
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2.5 Access Control List Processing Enhancements

Due to the compositional differences of standard and Extended IP Access Control
Lists, they are processed in a different manner. For example, if a router is configured
with a standard IP Access List, the ACL can be cached and the packets take the Fast
Switching Path (FSP) [Nyg98]. FSP is a hardware solution, whereby the processing is
optimized to provide the fastest flow of packets through the router.

When Extended IP Access Control Lists are applied to an interface, incoming packets
flow through the router’s CPU [Nyg98]. At Cisco and other companies developing
routers, engineers are continuously striving to increase the processing speeds in their
routers. The following three process enhancing features (introduced by Cisco) can speed
up the flow of packets through a router; however, the enhancements are not being
implemented on the AFIT or DISA networks. NetFlow Switching can cache the entire
session information for each flow of traffic arriving at a router; therefore, only the first
packet of a session must be validated against the assigned ACL while the rest of the
packets associated with the input stream are allowed to pass through the router. The
Distributed Switching technique allows the processing to be accomplished by the
interface card; therefore, packets are allowed to bypass the CPU. The third enhancement,
Cisco Express Forwarding (CEF) is used to pre-build forwarding tables. The forwarding
table created by CEF contains the same information stored in the NetFlow cache;
however, it does not require the first packet latency of creating the cache entry. Also, the
forwarding table can be downloaded into each interface processor, in effect processing is

being accomplished in a distributed fashion [Nyg98].
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2.6 Network Security

As network resources and their availability increase, so does the threat that both
authorized and unauthorized users will misuse these resources. The privacy and integrity
of an organization’s entire system is reliant upon security management. The various
threats to network access control include spoofing, illegal associations, unauthorized
access, denial of service, repudiation and Trojan horses (several of these are discussed in
detail later) [Kum97].

This portion of the literature review focuses on the need for strong underlying security
architectures. Having an organization’s network tied to the Internet makes good business
sense; however, there are some recognized threats associated with being hooked to the
Internet. There is always the potential of having the network broken into and having
company trade secrets stolen. A poorly protected network can quickly become an
organization’s Achilles’ heel.

2.6.1 A Need for Protective Measures

“A recent Ernst & Young survey found that four out of every five large organizations
(greater than 2,500 employees) run mission-critical applications on local-area networks
(LANs). The LANSs and the information they process, increasingly come under direct
threat through inter-network connections” [NAT97]. During a National Computer
Security Association (NCSA) study of 61 large organizations, NCSA found 142 separate
security-breach and system-hacking incidents, all within a 3-month period [NAT97]. The
current trend sees companies clamoring to get connected to the Internet before they take

the proper steps to protect themselves from an Internet attack.

17




A recent article in The Sunday Times paints a dismal picture of the United State’s
frail network infrastructure. A series of “war games conducted by experts has revealed
that the world’s greatest superpower could be disabled by a handful of determined ‘cyber
attackers’ paralyzing airports, markets and military systems with a few taps on a
keyboard” [Cam98]. As America becomes more reliant on technology, the more
susceptible we become to a cyber-attack. When played properly, Cyber-warfare can be
considered the “balance of power” card. A small country with a grudge against the U.S.
doesn’t need to spend billions of dollars on offensive weapons, when a couple of million
dollars hires a handful of “cyber-mercenaries” capable of penetrating government systéms
and causing havoc [Cam98]. President Clinton has ordered the coordination of various
U.S. counter-terrorism agencies, and the formation of the FBI’s new National
Infrastructure Protection Center (NIPC), respohsible for gauging the vulnerabilities of
computer systems to a cyber-attack and finding a way to fight back if the U.S. is attacked
[Cam98][CNN98].

2.7 Risks Associated with the Internet

As mentioned earlier, the Internet provides new opportunities for all users; however,
the risks involved are ever increasing. Without the proper control mechanisms in place,
an organization’s data and systems are susceptible to various types of attacks. The next
few sections cover issues such as, loss of privacy and data integrity, IP Splicing IP
Spoofing, and various Denial of Service (DoS) attacks.

2.7.1 Loss of Privacy and Data Integrity
When two systems are communicating with one another, their electronic dialog is

susceptible to packet sniffing. Without using some form of encryption technique, a third
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party is afforded the opportunity to eavesdrop. The 1996 Annual Report from the
Computer Emergency Response Team Coordination Center listed packet sniffers as one
the most common data intrusion incidents [Cis98d]. Data integrity involves ensuring
packets are not tampered with while in transit. Data contained in packets can be afforded
some protection if some form of data encryption is utilized.
2.7.2 |P Splicing

An attacker using IP splicing can tap into an active session and share the entry point
into the network with an authorized user. If the splicing takes place after the
authentication phase, the attacker can assume the identity of the already authorized user.
To prevent an IP slicing attack, once again an encryption scheme needs to be used at the
session or network layer [Ran96].

2.7.3 |IP Spoofing

In IP source address spoofing, the attacker illegitimately uses a trusted machine’s IP
address in conjunction with some protocol that authenticates packets based on the
packet’s IP address [Bel95]. To accomplish this feat, an attacker creates packets with the
spoofed source IP addresses. If a firewall is not set up to filter incoming packets whose
source address is in the local domain, it can lead to unauthorized remote access to the
protected network. Once an intruder gains access to a network, the potential for damage
can be immense.

Thé most effective method of preventing IP spoofing is to configure the access
control lists on the inbound router to deny packets with a source address matching those
of the internal network [Dae96], and check the source addresses of packefs entering the

network. It is also important to ensure all packets exiting the network have the internal
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network’s source IP address. The implication of the source address of an outbound
packet being something other than the internal network’s IP address points to an
individual within the organization that is up to no good.
2.7.4 Denial of Service
Denial of service (DoS) attacks are designed to cause computer systems to slow down
considerably or fail. DoS attacks can take many forms and can be targeted towards a
single user, a system, or directed against the entire infrastructure. The next several
paragraphs discuss various forms of DoS attacks, such as ICMP bombing, Smurfing,
Syn/Ack Attack, and the ICMP echo.
2.7.4.1 ICMP Bombing
One use of the Internet Control Message Protocol (ICMP) is to re-route traffic on
the fly. For example, one router can broadcast to all other peers that a destination
host, a specific IP address, is unavailable. Each interface on a router is identified by a
specific IP address; an attacker wishing to stop the flow of traffic to a specific router
interface, can accomplish this by sending an ICMP destination unreachable command
to other routers located on the Internet [Ran96]. In effect, the attacker is telling the
world that router X is unavailable and packets should be rerouted or dumped.
2.7.4.2 Smurfing
Smurfing also utilizes the ICM protocol. A perpetrator sends a large quantity of
ICMP echo packets to broadcast sites. Each packet sent has a spoofed source address
of the victim (target). In the end, the target is inundated with incoming packets from
other hosts acknowledging receipt of the ping message. When the packets are

delivered to the broadcast sites, each packet is broadcast to a lower network level; on
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a multi-access broadcast network there could be hundreds of machines replying to
each packet sent.

To prevent a Smurfing attack, it is necessary to have filtering accomplished at the
outer edges of the network. An ACL statement such as the following is effective in
denying all ICMP packets - access-1ist 101 icmp deny any any;
however, an unfortunate side effect of denying all incoming ICMP traffic is that the
legitimate uses of this protocol are also affected. In order for an attack of this nature
to be effective, the perpetrator is counting on getting the spoofed packets to the
“bounce sites” [Hue97]. The broadcast sites can yield an extra ounce of prevention if
they turn off directed-broadcasts.

2.7.4.3 Syn/Ack Attack with IP Spoofing

The syn/ack attack is effective in disabling a site temporarily. A regular network
session is initiated through a three-way handshake between a requester and host. The
requester sends a syn (synchronize) message to a host requesting a session be
established. The host responds with a syn ack (acknowledgment) back to the
requester. The requester completes the transaction by transmitting a final ack packet,
upon receipt of the final acknowledgment packet the host initiates a session.

The preceding paragraph outlined the steps taken during a legitimate session
request. The following steps demonstrate what happens during a syn/ack flood attack.
The attacker sends a syn message to a host with a spoofed IP address (non-existent).
The host responds with a syn ack; however, the packet goes to the bit bucket (since
the destination address is a phony), thus an ack packet never arrives [Bel95]. This

action leaves a half-open state at the server. Half-opened states are kept in a queue
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until the appropriate ack message arrives to complete the handshake. If the above
process is repeated a number of times the queue eventually fills up. The problem
)
associated with the syn/ack attack is that legitimate users wishing to establish a
session can’t, due to the queues being full. To overcome this type of attack, queues
need to be flushed periodically or a time-out criterion set for half-open sessions.
2.7.4.4 ICMP Echo
The ICMP echo attack is yet another DoS attack based on the features of the ICM
protocol. Generally ICMP echo and echo reply messages are sent between routers to
request the status of each other. This feature is particularly useful to determine
whether a router is active or off-line. Based on the queried router’s status, the
querying router can direct packets down the appropriate path.
An attacker can use the echo commands to get two routers into a looping
condition. The attacker initiates an attack by transmitting an echo request to router Y
(source IP address is that of router X). Router Y replies to the echo packet back to
router X. Router X receives the echo reply; however, X didn’t send an echo request,
so it interprets the packet as an echo request, thus the cycle begins. The circular
condition of the ICMP echo attack can quickly affect routing performance.
2.8 Summary

Within this chapter different topics have been discussed, each deals with one aspect of
network security or another. It is clear that as the proliferation of computers and network
systems spread, the risks of individuals using computers for unintended purposes
increase. The need for stringent security policies can not be emphasized enough. An

organization with an unprotected network is only inviting trouble.
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There are many different ways to protect a network. It is important to realize that the
security of a network system can no longer be accomplished any more by locking the door
to the building as the last person leaves. More aggressive measures need to be taken to
shore up the plethora of possible attack options available to a hacker. Security holes
provide a hacker a portal into a network, where the hacker can disrupt network activities

and possibly corrupt or misuse mission essential data.

The emphasis of this review focused on the use of access control lists as the first line
of defense in filtering packets arriving at a network's gateway. There are various forms of
ACLs, each with its own special characteristics and functionality. The standard ACL can
. be utilized as a limited firewall mechanism, while Reflexive and Lock-and-Key access
control lists are activated by newly created sessions allowing packets from outside of the
network to pass through the firewall. The main purpose of researching access control
lists was to find information concerning performance characteristics of ACLs, specifically
looking at whether or not the length of an ACL can actually affect router CPU
performance. As mentioned in 2.3, the length of an ACL does play a role in router
performance; however, no facts or figures to support these claims were found in open

source literature.
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3. Methodology

3.1 Introduction

The methodology used for this thesis effort consisted of three phases. The first step
focused on the development of the ACL Model, based upon a software solution. The
second phase of the research project dealt with acquiring real world Access Control Lists
(ACsz and Internet Protocol (IP) packet headers from the Air Force Institute of
Technology (AFIT) and the Defense Information Service Agency (DISA). The final step
was the analysis of the data collected from various simulations and the acquired data.

The processing time required to service an incoming packet is continuously
diminishing, due to a combination of hardware improvements (e.g., faster CPUs and fast
cache) and software features designed to enhance router performance (refer to Section
2.5). However, a poorly organized ACL can have a negative impact on overall router
performance. Data is unavailable in identifying the point where the router CPU
consumption is degraded to an unreasonable point based on the length of the assigned
ACL. One reason for the lack of research in this area can be attributed to the fact that
ACLs in the paét haven’t been very large. However, as threats continue to mount around
an organization’s network, it is necessary for organizations to take the appropriate steps
to protect their networks, hardware, and data. The first step consists of modifying the
applicable ACLs to deny network access to known malefactors. Refer to a discussion on
the pros and cons of various ACL security policies in Section 2.3.1.

There are three methods to aid in the evaluation of system performance — analytical

modeling, simulation, and measurement [Jai91:30]. For this research effort, the
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simulation route was explored in the development of the ACL Model. Simulation was
selected over analytical modeling and measurement for the following reasons.

e Time required. Setup time of a router specifically configured to test the role the
length of an ACL plays on router CPU consumption could have taken too much
time and expertise. ~Designing the ACL Model took a minimal amount of time
and the learning curve was small since the tool, BONeS Designer, had been used
in the past.

e Tools. The BONeS Designer network simulation tool was readily available, while
an idle router was not.

e Accuracy. Analytical modeling provides the lowest level of accuracy, since it
requires so many simplifications and assumptions. Simulations require few

| assumptions and can incorporate more detail, providing a moderate level of
accuracy. The accuracyv of the measurement evaluation technique ranges from
high to none, based on varying environment parameters and system configuration.

e Cost. As mentioned under tools, the simulation tool was already registered and in
use, while a router would have to be located, setup and configured. In addition,
utilizing a simulation tool allowed for configuration changes with minimal effort.

The ACL Model, a system designed to simulate a network router’s packet validation

component, uses Designer modules to mimic the flow of packet headers through the ACL
located within a router. The rele the length of an IP access control list plays on router
CPU consumption and how an ACL can be optimized to increase performance are both

studied.
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In this chapter, the methodology used during the design process of the ACL Model is
discussed. The requirement section addresses the objectives of the ACL Model, and how
those objectives are met. Also addressed in this chapter is the domain within which this
research endeavor lies, explaining why the focus of the research was on Extended IP
Access Control Lists. A detailed explanation of the design of experiments is also
provided. Various issues relating to the input data’s characteristics (the sample ACLs and
the IP traffic) and the topic of timing within the simulation is discussed in Section 3.4.
The last section concludes the chapter with a discussion on the topic of model verification
and validation.

3.2 Requirements of the ACL Model
3.2.1 Goals

The primary goal to be achieved in this endeavor is to show that the length of an
access control list does take a toll on router CPU consumption. It is useful to show a link
between the length of access control lists and the latency associated between the time a
packet begins to pass through the ACL and the time it completes the check. The primary
objective of this research is to characterize the point where an ACL becomes so large
system performance is degraded beyond an acceptable limit. The secondary objective of
this project is to offer some insights into how ACLs can be optimized in regards to
complexity, length, structure, and ordering schemes in an attempt to improve system
performance.

3.2.2 Simulation Outputs
In a simulation environment, data can be collected at any point deemed necessary in

meeting the goals of the simulation endeavor. The output provided by the ACL Model
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includes the time required to check each packet against an assigned ACL. In addition,
various statistics can be gathered concerning the number of packets permitted and denied
by the ACL, along with the total time required to run the simulation.

3.2.3 Metrics

The primary concern of this research effort is to measure the packet latency, in terms
of how long it takes the router CPU to match an incoming packet to an entry within the
access control list. Also tracked was the total processing time required for a complete set
of input data to be scanned against the appropriate ACL; this metric affords the
opportunity to contrast the “optimized” ACL to the original ACL in an attempt to develop
universal approaches to optimization.

3.3 Domain
3.3.1 Overview

The ACL Model simulates a network router’s packet validation component. Since
router manufacturers keep their technology proprietary, it is necessary to identify the
processing steps being accomplished within the router. The ACL Model assumes the
Extended IP Access Control List packet validation component in a router is implemented
in software; [Nyg99] supports this aséumption.

Many different types of access control lists can be assigned to a router; however, the
focus of the research effort is primarily interested in the processing of IP packets. By
narrowing the focus of the research to IP traffic, the domain was reduced to standard and
Extended IP ACLs. As mentioned in Section 2.5, packets passing through an interface

with a standard IP ACL assigned are processed in hardware. However, packets entering a
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router interface with an Extended IP ACL assigned are individually analyzed with a
software implementation of the ACL packet validation component [Nyg98].
3.3.2 System Definition

The specifics of the ACL Model are discussed in detail in Chapter 4 and Appendix C.
However, it is necessary to define the system boundaries established while developing the
model, based upon research and tool limitations.

The ACL Model encompasses only the portion of the router responsible for filtering
packets based on an assigned ACL. As a packet arrives at a router, the router takes care
of routing the packet to the appropriate interface. Each interface in a router can have zero
or one ACL assigned. As the packet passes through the interface, the ACL is scanned
from top to bottom or until an exit criterion has been met.

To calculate the latency of packets being checked against an ACL, a simulation timer
is used. As the simulation starts the process of comparing the header information of an
incoming packet against the assigned ACL, the; “start time” is stored in the packet’s data
structure. The packet header data structure contains pertinent addressing information
such as protocol type, source address and port, destination address and port, and two
additional fields to store the “start time” and “stop time” for each packet passing through
the simulation. Upon completion of the check, the “stop time” is also stored in the packet
header data structure. The latency of a packet is simply the difference between the stop
and start times. The total time for each collection of packets is also computed, this value
is important in the identification of the point where an ACL becomes too large and
system performance is degraded. The total time is also used to determine whether or not

the “optimized” ACLs perform more efficiently.
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3.3.3 Design of Experiments

In Tables 3 through 5, the ranges of experiments accomplished during this simulation

endeavor are identified. In all experiments 11,443 real world IP packets from AFIT and

DISA were used. The initial number of packets provided by DISA determined the

number of input IP packets used throughout the simulation process. The first group of

experiments in Table 3 scans real world IP packets against their respective ACL; this

group is considered the baseline for all other simulations. The second grouping in Table

3 takes 11,443 random IP packets generated by Designer and scans for them in real world

ACLs; three different seeds are used for each simulation. Group three in Table 3 looks at

the results of taking IP packets destined for one specific router interface (e.g., DISA) and

routing them to another interface (e.g., AFIT).

Table 3. Description of Experiments — Baseline ACLs

Group Description of Experiment Number of Lines
AFIT packets against AFIT ACL 101 67
1 DISA packets against DISA ACL 101 72
DISA packets against DISA ACL 199 688
Random packets against AFIT ACL 101 (3 Seeds) 67
2 Random packets against DISA ACL 101 (3 Seeds) 72
Random packets against DISA ACL 199 (3 Seeds) 688
DISA packets against AFIT ACL 101 67
3 AFIT packets against DISA ACL 101 72
AFIT packets against DISA ACL 199 688

Figure 4 depicts the expected trend in packet latency as a function of the overall

length of an ACL. It is our contention that the longer an access control list becomes the

packet latency increases to a point where router performance is hindered. We

hypothesize that when incoming packet headers are scanned against the appropriate ACL
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(as described in Table 3, Group 1) the packet latency is lower than the instances when
random packets or packets destined for another router are applied (Table 3, Groups 2 and
3). It is expected that randomly generated packets have a higher probability of being
accepted by an ACL versus packets destined for another router, thereby reducing the
overall packet latency. The figure also identifies the expected trend in packet latency for
input IP packet headers against an optimized ACL. The knee in each curve represents the
point where the length of an ACL adversely affects router performance. The primary goal
of this research effort is to identify where the knee occurs, as this is the point where the

ACL starts to become too long.

Packets Received from
Ancther Organization

Random Packets

Enterprise Packsts

Optimized
ACLs

Latency of Packet

Size of ACL

Figure 4. Expected Behavior of Simulations

The next nine groups of experiments in Table 4 reflect the same setup as the first
three groups, except they are simulated using longer access control lists. The experiments
use the same 11,443 IP packet headers as described for Groups 1 through 3. The access
control lists were not just doubled, tripled or quadrupled in this effort; caution was used

to ensure the terminator entries for the protocols were not duplicated (in the rare cases
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where such entries were used). In the event the duplication of a terminator entry should
occur, an incoming packet would be prematurely discarded before completely traversing

the ACL. Entries designed to capture a particular address were the types of elements

increased.
Table 4. Description of Experiments — Expanded ACLs
Group Description of Experiment Number of Lines
ACL Expansion Set 1
AFIT packets against AFIT ACL 101 125
4 DISA packets against DISA ACL 101 138
DISA packets against DISA ACL 199 1376
Random packets against AFIT ACL 101 (3 Seeds) 125
5 Random packets against DISA ACL 101 (3 Seeds) 138
Random packets against DISA ACL 199 (3 Seeds) 1376
DISA packets against AFIT ACL 101 125
6 AFIT packets against DISA ACL 101 138
AFIT packets against DISA ACL 199 1376
ACL Expansion Set 2
AFIT packets against AFIT ACL 101 183
7 DISA packets against DISA ACL 101 203
DISA packets against DISA ACL 199 2064
Random packets against AFIT ACL 101 (3 Seeds) 183
8 Random packets against DISA ACL 101 (3 Seeds) 203
Random packets against DISA ACL 199 (3 Seeds) 2064
DISA packets against AFIT ACL 101 183
9 AFIT packets against DISA ACL 101 203
AFIT packets against DISA ACL 199 2064
ACL Expansion Set 3 '
'AFIT packets against AFIT ACL 101 241
10 DISA packets against DISA ACL 101 268
DISA packets against DISA ACL 199 2752
Random packets against AFIT ACL 101 (3 Seeds) 241
11 Random packets against DISA ACL 101 (3 Seeds) 268
Random packets against DISA ACL 199 (3 Seeds) 2752
DISA packets against AFIT ACL 101 241
12 AFIT packets against DISA ACL 101 268
AFIT packets against DISA ACL 199 2752
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Groups 13 and 15 in Table 5 detail the various experiments of sending real world IP

and randomly generated packets against “optimized” ACLs, based upon a frequency

analysis of the incoming IP packet headers and traffic analysis. Each input data set

contains 11,443 IP packet headers. Group 14 and 16 detail the experiments where one

ACL entry from the “optimized” ACLs is misplaced with the intention of identifying the

impact a single entry can have on the overall mean packet latency.

Table 5. Description of Experiments — Optimized ACLs

Group Description of Experiment Number of Lines
AFIT ACL Optimization Attempt
AFIT packets against Reordered AFIT ACL 101 70
13 Random packets against Reordered AFIT ACL101 (3 Seeds) 70
DISA packets against Reordered AFIT ACL 101 70
AFIT ACL Modification
AFIT packets against Reordered AFIT ACL 101 70
14 Random packets against Reordered AFIT ACL101 (3 Seeds) 70
DISA packets against Reordered AFIT ACL 101 70
DISA ACL Optimization Attempt
DISA packets against Reordered DISA ACL 101 75
15 Random packets against DISA ACL 101 (3 Seeds) 75
AFIT packets against DISA ACL. 101 75
DISA ACL Modification
DISA packets against Reordered DISA ACL 101 75
16 Random packets against DISA ACL 101 (3 Seeds) 75
AFIT packets against DISA ACL 101 75
3.4 Issues

3.4.1 Input Data Characteristics

As discussed in the previous section, the first groups of simulations utilized the

ACLs in their original form. The last 20 simulations took the same IP packet header data

against the “optimized” and modified ACLs. While varying the ACLs in an attempt to
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optimize them, all efforts were taken to maintain their completeness and avoid any
degradation of their functionality.

Due to the sensitive nature of ACLs, the actual ACLs from DISA and AFIT can not
be published in this document. ACLs provide the overall temperament of an
organization’s security policy, and may inadvertently identify a security hole that may be
exploited. In addition, the ACL may identify addresses of known malefactors as
identified by a Computer Emergency Response Team (CERT). Announcements made by
the Air Force CERT (AFCERT) are not to be released outside of DOD ghannels. Chapter
5 provides the general security policy of the AFIT and DISA ACLs, without revealing
specific addresses.

The general makeup of each ACL is described in Chapter 2 and Appendix A. The
ACL data structure used for simulation purposes is discussed in Chapter 4, and the actual
format of an input file entry can be viewed in Appendix B.

Initially, the original design of the ACL Model would create random IP packet header
data and direct them towards the uploaded real world ACLs; however, further
consideration of the potential for an arrival pattern from real world Internet packets
identified the need to acquire real data. The sample IP packet headers were collected
from routers located at DISA and AFIT; additionally, data was collected from various
times of the day at both locations, thus providing a more complete sampling of the
various traffic patterns expected throughout an average day. The DISA packets provide a
real world representation of the data arriving at the router interfaces housing the ACLs
obtained from DISA. The IP packet header data collected from AFIT was captured upon

exiting the router; therefore, all of the data had already passed through the assigned ACL.
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One could argue that, since the data has already passed through the ACL there could be a
large number of packets being denied that are not being accounted for in the frequency
analysis used to optimize the AFIT ACL. However, based on the distribution of the AFIT
packet headers used in all simulations, we conclude the distribution by protocol would
not change significantly by not counting the denied packets. Table 6 depicts the current
distribution of packets by protocol; IP packets comprise 94% of all incoming traffic. For
example, to alter the choice of the dominant protocol, approximately 11,000 additional
TCP packets would have to be denied while at the same time no IP packets could be
denied. In terms of the simulation, how does the distribution by protocol relate to the
conclusions regarding performance and optimizations? Determining the number of each
type of protocol entering the router over a given time period provides system
administrators the necessary information to tune their ACL (further information regarding
ACL tuning is provided in Chapter 5). As described in the Design of Experiments
section, various protocol mixes of packet headers are utilized (through the use of
randomly generated packets and packets destined for a different router). Chapter 5 shows
how the average packet processing times may be different, but the overall trends remain
constant.

Table 6. Distribution of AFIT Packet Headers by Protocol

Protocol
Input File IP TCP UDP ICMP
AFIT 10781 461 176 25

3.4.2 Timing Issues
The ACL Model as originally designed, successfully captured the flow of the packet

header information through the packet validation code; however, the timing element was
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missing from the model. The Designer tool does not embody the actual router processor;
therefore, it was necessary to calculate the processing delays based on the instruction mix
of the ACL Model, the router’s microprocessor clock-cycles per instruction (CPI), and the
cycle period of the router. Due to the proprietar}; nature and unavailability of the actual
code responsible for validating the incoming packets against the assigned ACL, the
instruction counts arrived at are based on an estimate of the processes occurring within a
router. The CPI value is based upon research in the area of RISC proceésing
accomplished by [EsR91]. The Clock Cycle rate is a simple calculation based on the
speed of the processor.

The packet validation process being simulated is designed to mimic the processing
accomplished in a Cisco 7500 series router using the MIPS R5000 microprocessor.
Research shows the average clock-cycles per instruction (CPI) to be 1.2 [EsR91]. The
CPI was instrumental in calculating the CPU time required to complete each block of
instructions in the ACL Model. CPU time for each block was calculated in the following
manner [HeP94:57]:

CPU Time = Instruction Count Per Block x CPI x Clock Cycle Time. (D)

Knowing the Cisco 7500 series router has an internal processing speed of 200 MHz
on Route Switch Processor 4 (RSP4) [Cis98e], it is possible to calculate the clock cycle
time. In this case according to [HeP94:57]:

Clock Cycle Time = 1/(200 x 10% = 5ns. 2)
The clock cycle time formula from above yields a cycle time of 5 nanoseconds.
Therefore, access to the instruction count per block in the ACL model, the average CPI

for a given microprocessor, and the clock cycle time based on the processor’s clock
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period rate provided the information needed to apply the appropriate delays in the ACL
model. The next chapter delves into the details of the design assumptions regarding
timing.

To ensure the packet processing times calculated by the ACL Model are reasonable,
meaning the total packet latency as determined by the ACL Model is smaller than the
time required to pass through the entire router, the raw packet data received from AFIT
and DISA was analyzed. An analysis of the flow data of the packet headers shows the
average packet arrival rate is approximately 35 us. Several attempts were made, via
correspondence and research, to quantify the average time a packet remains in a router;
however, each attempt to obtain this information was unsuccessful.

3.5 Verification and Validation

Routers are utilized extensively throughout the world to transfer electronic packets
between points A and B. Each manufacturer of routers designs its hardware and software
to operate differently than the competitors. However, a model can be built that simulates
the general processes being accomplished in all routers. The specific router process being
simulated by the ACL Model is the component responsible for validating packets as they
pass through the router’s interface; this process is accomplished using access control lists.
3.5.1 Model Verification

- The model verification step involved three phases. Phase 1 of the model verification
consisted of using the verification tool included with BONeS Designer. Each module
needed to be verified prior to being used in another module or simulation. The types of
errors trapped by Designer included: module inconsistencies, construction errors, and

dependencies.
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The second phase of the verification process involved testing each module in the ACL
Model independently. Each module was simulated as a single entity, prior to integrating
‘it into the ACL Model, to ensure the desired output was achieved based on the various
test cases.

The final phase of system verification involved attaching the ACL Model modules
together and testing the system as a whole. During this phase, the initial tests involved
using simple two line access control lists and various IP packet header data files.
Designer provides a debug function allowing a user to step through each module in the
simulation; this afforded the opportunity to test each viable path the data packets can
follow. The outputs of the various tests were within expectations.

3.5.2 Model Validation

The creation of a model that is representative of the packet validation process is very
challenging, since there are many unknowns and the software is proprietary. Considering
this research focuses on a process within a router whose operations are not published, the
ACL Model reflects the few known properties, such as microprocessor speed, CPI, and
that the packet validation process is accomplished using software. Care was taken in
identifying the steps being accomplished within the router based on sound software
design principles.

Part of the model validation consisted of accomplishing a sensitivity analysis of the
ACL Model. The two sets of simulations relating to the sensitivity analysis can be seen
in Table 7. The first set of experiments (Group 1) attempts to quantify the processing

time required to validate a packet based on the instruction count values being increased in
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various modules. The instruction count was increased by 14 instructions for the Group 1

simulations. All experiments utilized the AFIT ACL101 and its four varying lengths.

Table 7. Description of Experiments — Sensitivity Analysis

Group Description of Experiment Number of Lines

Instruction Count Variation One

AFIT packets against AFIT ACL 101 67

1 AFIT packets against AFIT ACL 101 125

AFIT packets against AFIT ACL 101 183

AFIT packets against AFIT ACL 101 241
Instruction Count Variation Two

AFIT packets against AFIT ACL 101 67

2 AFIT packets against AFIT ACL 101 125

AFIT packets against AFIT ACL 101 183

AFIT packets against AFIT ACL 101 241

The second set of simulations (Group 2) answers the question, “What is the impact if

the ACL in a router is not stored in registers and each ACL entry must be loaded from

memory into the registers?” If this were the case an additional 44 instructions would be

required to load a single ACL entry from memory to the appropriate registers.

The results of the simulations were as expected; the processing time for the various

simulations increased due to the increase in instruction count values. The bottom line is

the growth in mean processing time remains linear despite the increase in instruction

counts values. The results of the sensitivity analysis can be seen in Figure 5. The figure

depicts the results of the two simulation sets described above compared to the results of

the AFIT packets being scanned by the ACL Model with the original instruction count

values (refer to Table 21 in Appendix C for the original instruction count values).
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Mean Packet Processing Times for Various Instruction Counts (IC)
Based on Varying Length AFIT ACL101
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Figure 5. Sensitivity Analysis Results

Wherever possible the design of the ACL Model is based upon available data
concerning the operation of a router. The overall design of the ACL Model reflects the
inputs of my peers and the insights provided by my advisor. The results of the modeling
and simulation approach are only as valid as the logic and parameters used to construct
the model. In an attempt to further validate the ACL Model, copies of the model were
sent to personnel at Cisco and DISA. A representative from Cisco offered the following,
“Your model is reasonably accurate for the configuration you have given” [Nyg99]. To
aid in the statistical relevance of the output, multiple simulation runs will be performed
with various global seeds, varying lengths of access control lists, and IP packet headers

collected from various times of the day.
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3.6 Summary

This chapter presents a high-level discussion of the approach chosen for this thesis.
Effort was concentrated on identifying what the ACL Model is capable of accomplishing
and how the model utilized the input data in the form of real world access control lists
and IP packet headers. Also covered was the domain of the simulation, to include a
description of the system definition and the design of experiments. The final sections
discussed the steps taken to verify and validate the ACL Model.

Chapter 4 addresses the top level system design of the ACL Model and how it
simulates the ACL checking facility located in a router. Also addressed is an explanation

of the various data structures, memory modules and parameters.
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4. ACL Model Design and Implementation

4.1 Introduction

The Access Control List (ACL) Model was designed to simulate the flow of IP packet
headers through a router interface with an assigned ACL. The model environment was
designed so that variations to the ACLs could be introduced and subsequent
measurements taken to evaluate system performance. This chapter captures the essence
of the many design decisions made during the creation of the ACL Model and discusses
their validity as a representation of the IP packet validation process occurring within a
router. This chapter concludes with a discussion on the topics of model configuration and
data collection.
4.2 Basic ACL Model Construction

The ACL Model was developed using BONeS Designer. The approach taken in the
development of the ACL Model was that of small incremental steps, building from the
bottom up. Each level of the model was built using modules designed specifically for the
ACL Model. Appendix C is designed to take the reader through the simulation start up,
initialization and all of the packet validation steps. The appendix contains a detailed
explanation of each module and top-level system parameters. Appendix C is designed to
be a supplement to this chapter.

In various publications from Cisco, one of the major manufacturers of network
routers, the authors freely use the term “software” when referring to access control. The
ACL Model builds on the fact that the Extended IP Access Control List scans are

accomplished using software [Cis97].
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The ACL Model does not embody an entire router, or even the interface on a router.
The sole purpose of the model is to accomplish the packet validation process. It is
assumed the interface has forwarded the packets to the ACL. In addition, the focus of this
thesis effort deals primarily with routers at the outer edge of a network, their primary
function being to scan each packet header to determine whether or not the packet should
be allowed to pass through the network.

4.3 Overview of the ACL Model Parameters

In the previous section, the underlying assumptions complied with while designing
the ACL Model were identified. This section focuses on various links between the
different modules in the ACL Model, in terms of their parameters and variables.

The creation of the ACL Model involved the use of many different variables and
parameters; at this juncture it is necessary to identify the most important parameters of the
ACL Model. A complete listing of all parameters and variables can be found in
Appendix C, Table 21.

4.3.1 Data Structure Population

A data structure is defined to meet the needs of the model and does not need to
duplicate all of the functionality of a system being simulated. During the simulation in
Designer, data structures travel through the system triggering events and collecting data.

'The data employed by the ACL Model is passed from one module to another via two data
structures, Single ACL Entry and Packet Header, designed exclusively for this modeling
effort. The standard libraries accompanying the Designer modeling package included a
predefined data structure similar in construct to the Packet Header; however, the data

structure contained excess fields not necessary for the ACL Model. Therefore, following
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good modeling practices, the Packet Header data structure was designed to contain only
the fields necessary for thé simulations.
4.3.1.1 Single ACL Entry

At the commencement of the simulation, the entire access control list is placed into a
vector identified as ACL in Memory. Once the first packet is “received from the router
interface” the Single ACL Entry data structure (Table 8) is populated by values from the
ACL in Memory vector. The ACL Vector Counter maintains the value of the starting
position of the next ACL entry in the vector for each iteration of the While Loop module

(Figure 17 in Appendix C).
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Table 8. Single ACL Entry Data Structure

type TCP or UDP this field contains the
destination port to be compared to.

Field Name Description Legal Range
Action This field identifies what action (permit or [0,1]
deny) is to occur when an incoming packet
matches the ACL entry
Type This field identifies the type of packet the [0,3]
ACL entry is designed to filter. In this thesis
there are four types of protocols dealt with: IP
(0), ICMP (1), TCP (2), and UDP (3).
ACL Source Dot1 The addressing scheme of Internet Protocol [0,255]
Version 4 involves a 32-bit address, divided
into 8 bit pieces. ACL Source Dot1
represents the first 8 bits of the source
address.
ACL Source Dot2 ACL Source Dot2 represents the second 8- [0,255]
bit sequence of the source address.
ACL Source Dot3 ACL Source Dot3 represents the third 8-bit [0,255]
sequence of the source address.
ACL Source Dot4 ACL Source Dot4 represents the fourth 8-bit [0,255]
sequence of the source address.
ACL SourceMask Dot1 ACL SourceMask Dot1 represents the mask [0,255]
to apply to Source Dot1 :
ACL SourceMask Dot2 Mask to apply to Source Dot2 [0,255]
ACL SourceMask Dot3 Mask to apply to Source Dot3 [0,255]
ACL SourceMask Dot4 Mask to apply to Source Dot4 [0,255]
ACL Dest Dot1 Similar to the ACL Source Dot1 description, [0,255]
ACL Dest Dot1 represents the first 8 bits of
the destination address.
ACL Dest Dot2 ACL Dest Dot2 represents the second 8-bit [0,255]
sequence of the destination address.
ACL Dest Dot3 ACL Dest Dot3 represents the third 8-bit [0,255]
' sequence of the destination address.
ACL Dest Dot4 ACL Dest Dot4 represents the fourth 8-bit [0,255]
sequence of the destination address.
ACL DestMask Dot1 ACL DestMask Dot 1 represents the mask to [0,255]
apply to Destination Dot1
ACL DestMask Dot2 Mask to apply to Destination Dot2 [0,255]
ACL DestMask Dot3 Mask to apply to Destination Dot3 [0,255]
ACL DestMask Dot4 Mask to apply to Destination Dot4 [0,255]
Operation When the incoming packet protocol is of the [0,4]
type TCP or UDP there is an operation
assigned, else this value is 0. In the
Extended IP ACL there are four types of
operations: Greater Than (1), Less Than (2),
Equal (3) and Not Equal (4).
Port Number When the incoming packet protocol is of the [0,65535]
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4.3.1.2 Packet Header

Once the entire ACL has been loaded into memory, the data file containing the
Internet Protocol (IP) packet header data is opened. Once the file is opened, the File Mem
Pkt pointer is utilized to identify where the next IP packet starts. The Packet Header data
structure (Table 9) is filled by extracting the values from the external file. Only one
packet header is read from the file at a time.

Table 9. Packet Header Data Structure

Name Description Legal Range
Protocol This field indicates which upper layer protocol is [0,3]
to receive the data portion of the datagram
[Dav88g].
Source Dot1 The addressing scheme of Internet Protocol [0,255]

Version 4 involves a 32-bit address, broken up
into 8 bit pieces. Source Dot1 represents the
first 8 bits of the source address.

Source Dot2 Represents the second 8-bit sequence of the [0,255]
source address.

.| Source Dot3 Represents the third 8-bit sequence of the [0,255]
source address.

Source Dot4 Represents the fourth 8-bit sequence of the [0,255]
source address.

Destination Dot1 The addressing scheme of Internet Protocol [0,255]

Version 4 involves a 32-bit address, broken up
into 8 bit pieces. Destination Dot1 represents
the first 8 bits of the destination address.

Destination Dot2 Represents the second 8-bit sequence of the [0,255]
destination address.
Destination Dot3 Represents the third 8-bit sequence of the [0,255]
) destination address.
Destination Dot4 Represents the fourth 8-bit sequence of the [0,255]
destination address.
Source Port If the protocol is of the type TCP or UDP, there [0,65535]

is a source port address assigned; else the
value in this field is 0.

Destination Port If the protocol is of the type TCP or UDP, there [0,65535]
is a destination port address assigned; else the
value in this field is O.

ACL. Start Time The time a packet begins traversing through the [0,0]
ACL is stored in this field.
ACL Stop Time The time a packet stops traversing through the [0,09]

ACL is stored in this field.
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4.3.2 Required Parameters for Simulation

There are many configurable parameters in the ACL Model; however, there are four
parameters in particular an individual using the system must properly set to have a
successful simulation. The parameters identify the two files to open and the number of
entries in each file.
4.3.2.1 ACL File to Open and Packet Header File to Open

The user of the ACL Model must identify the location and names of the two input
files necessary for the operation of the model. As mentioned before and shown in
Appendix B, the precise format of the files is paramount in the overall success of the
simulation.
4.3.2.2 Number of Lines in ACL and Number of Packet Headers

In order for the ACL Model to aqcurately mimic the operations occurring in a network
router, an accurate line count of each input file is important. The two line count values
are used exclusively in controlling the two main looping mechanisms within the model.
In the event an input value is too large, errors to the effect, “exceeded end of file” are
encountered. If the input numbers are too small, the entire ACL will not be loaded into
memory and all of the packet headers will not be tested; in the end, the probability of a
skewed resultant data set is increased.
4.3.3 Essential Component Level Variables

The previous section identified the four essential parameters required for a successful
simulation. This section looks at several variables required to control the flow of the
simulation. The Designer tool took care of assigning the appropriate variables for the

purpose of controlling the loop modules. The next few sub-sections highlight the two
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variables used specifically to control the flow of the simulation. Also explained are two
variables used to track the final status of each incoming packet.
4.3.3.1 Found Flag

As the name implies, Found Flag is simply an integer variable initialized to zero and
incremented to one (1) if the incoming packet header has passed all of the checks
associated with an entry in the applicable ACL. In the case where the Found Flag is
greater than zero, the While Loop module is exited, all counters and flags are reinitialized,
and the next incoming IP packet header is retrieved from the input file.
4.3.3.2 Failed Check

Similar to the Found Flag, the Failed Check variable is also a flag. When the Failed
Check variable is tripped (assigned a value greater than zero), the program returns control
to the While Loop module, where the program acquires the next ACL entry or exits the
loop and retrieves the next IP packet header. The Failed Check flag is located in each
Designer module where a comparison is made between the entries in the Packet Header
and the Single ACL Entry data structures.
4.3.3.3 Number of Packets Permitted and Number of Packets Denied

These two variables do not have any bearing on the flow of the simulation, they were
designed to identify the number of packets being permitted or denied access to the router.
In the majority of the simulations, the final value of each variable was inconsequential.
However, in the simulations concerned with testing the ACL optimization techniques, the
values in the two variables provided a means of identifying whether or not all of the

packets were being captured by the ACL terminator entries.
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4.4 Model Configuration and Data Collection

The primary thrust of this research effort was to identify the point where the length of
an ACL starts taking a toll on the overall system performance of the network router upon
which it is utilized. Also studied were ways to optimize the ACLs, by modifying the
order of the entries and noting the differences in processing times. Baselines of the
model are required so subsequent simulation data can be compared and meaningful data
extracted.

Table 3 identifies the set of experiments considered the baseline for this research
effort. Baseline values consist of the mean processing times for an individual packet
header to be scanned against the original versions of the ACLs. For example, the values
in Table 11 represent the baseline values for the AFIT ACL101.

The following sections cover the test conditions common tc; all runs. The topics
covered include an overview of the input data, a discussion on how the same random IP
packet headers are generated for each simulation, a description of the assumptions
followed when identifying the instruction count for each module, and how the data is
collected and analyzed.

4.4.1 Input Data

The input IP packet files and randomly generated packets were standard in length,
composition and content throughout all simulations. In addition, within this model no
packets were lost due to queue overflows. Each simulation tested all 11,443 sample

incoming IP packet headers against various ACLs.
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4.4.2 Random Number Generation

The ACL Model contains several random number generators used to create random IP
packet headers. Within the BONeS Designer environment, each generator block is
supplied with a unique large integer to act as a seed. However, if the number supplied to
~ each generator is a —1, the global seed is used, allowing identical simulations to be run.
The random number generators in the Read Packets — Random module (Figure 16 in
Appendix C) all use -1 as their seed, allowing the global seed to control the simulation.
4.4.3 Instruction Count Formulation

To accomplish the task of assigning a time value to each module in the ACL Model, it
was necessary to complete an in-depth review of each module and identify the instruction
set most likely used for packet validation in a router. The following paragraphs discuss
some of the assumptions made in terms of the ACL Model and the computation of the
delay for each module. Appendix C identifies the instructions used to determine the
instruction count for each module.
4.4.3.1 ACL Model Assumptions

Several assumptions were made when calculating the instruction count for each of the
major components of the ACL Model. Instruction counts were not calculated for every
step in the model, only those operations contained in the software responsible for
scanning the incoming packet headers againsf the assigned ACL. In the event instructions
are overlooked, the instruction counts would need to be increased. Based on the
sensitivity analysis described in Chapter 3, it is expected that increasing the instruction
count can increase the overall mean packet latency induced by the packet validation

component. Figure 5 depicts the increase in mean processing time per packet while being
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scanned against the AFIT ACL101 of different lengths. The results of the sensitivity
analysis showed the growth of the mean processing time to be linear even in the event the
instruction counts must be increased.

e The ACL Model attempts to simulate the packet validation process associated
with a Cisco 7500 series router. Since this series of routers uses the MIPS RISC
chip, all instructions use the MIPS assembly language instruction set.

e When an access control list is applied to an interface on a router, it was assumed
the entire ACL is stored in registers. The program maintains a mapping of each
element and knows where and when each register is used. In the ACL Model, the
series of registers are represented as the Single ACL Entry data structure. This
assumption was also tested during the sensitivity analysis accomplished in
Section 3.5.2.

e When the instruction jump was used, a deviation was made from the normal
syntax. Generally, the MIPS jump instruction requires an address location to
jump to; in this case the module is identified instead of an address. The same
assumption applies to the beq (branch on equal) instruction.

e When anew Intefriet Protocol packet arrives at the router interface it is
immediately placed in a series of registers, represented in the ACL model as the
Packet Header data structure.

e When identifying the instructions, the focus was on identifying the appropriate
instruction to be executed by the CPU versus identifying each and every register

and memory location being used.
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4.4.3.2 Delay Computation

Throughout the simulation, absolute delay blocks were inserted to increment the CPU
processor clock. The delay for each block was calculated based on the CPI of the RISC
processor, the Clock Cycle time, and the applicable Instruction Count for each module.
As an example of the delay computation, assume an incoming packet must accomplish a
Mask Check; the delay associated with each Mask Check is 2.4 X 10°® seconds (24
nanoseconds). The delay of 24 nanoseconds is based on the Mask Check module’s
ihstruction count of four (4), a CPI of 1.2, and a Clock Cycle rate ‘of 5ns.

4.4.4 Data Gathering

Once the instruction count figures have been calculated and input into the model, the
model can be run to determine processing times. Once all of the simulations are run, as
discussed in Chapter 3, various factors can be observed to note trends in processing
times: ACL Start and Stop times, and the final counts of the number of packets permitted
or denied.

Finally, all data collected is analyzed in an attempt to identify the point where the
packet latency is adversely affected due to the length of the applied ACL. Another
byproduct of the simulations relating to the optimization efforts is a set of
recommendations identifying ways to decrease packet latency.

4.5 Summary

This chapter provided a top level description of the ACL Model architecture; a model
designed and used to simulate the processing accomplished within a network router while
scanning an incoming IP packet against an assigned ACL. The primary parameters and

variables responsible for the overall operation of the ACL were discussed. The details of
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the ACL Model are included in Appendix C. Efforts were taken to mimic the logical
flow of packet headers through the network router packet validation phase. Also
addressed was the topic of determining the instruction count in order to calculate the
appropriate module delays. Chapter 5 discusses the analysis of the simulation data and

highlights ACL optimization techniques.
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5. Simulation Results and Analysis

5.1 Introduction

This chapter presents an analysis of data collected during the simulations using the
ACL Model. During testing, data was collected to meet two objectives identified in
Chapter 1. The results for each objective are presented separately, starting with a
discussion of the performance issues related to the growth of ACLs. The final section of
this chapter embodies a set of universally applicable guidelines to follow when
developing or modifying an access control list, to ensure incoming packets are processed
in the most efficient manner.
5.2 Performance Issues Related to the Growth of ACLs

Throughout this thesis it has been conveyed that the larger an ACL becomes, the
longer the network router’s CPU must work to determine the final status of an incoming
packet (packet latency). The ACL Model showed the previous statement to be true.
However, the various simulations were inconclusive, in identifying a point (the “knee” as
depicted in Figure 4) where the router’s performance was significantly degraded.
5.2.1 Processing Time Grows Linearly

The ACL Model identifies how long it takes each packet header in the input data set
to pass through the packet validation phase of the router. However, the model falls short
in identifying a breaking point in system performance. Three different access control lists
are utilized during this research; and as discussed in Chapter 3, each list increases in
overall size to simulate growing ACLs.

As explained in Section 3.3.3, in addition to three randomly generated sets of IP

packet headers, two input files were applied against each access control list (to include
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the original and all expanded forms of the ACL). The first input file contained real world
packet headers from AFIT while the second file included packet headers from DISA.
Table 10 categorizes the contents of the input data, based on the packet header’s protocol
type.

Table 10. Distribution of Packet Headers Categorized by Protocol

Protocol
Input Data IP ICMP TCP UDP
AFIT Packets 10781 25 461 176
Random Seed 1 2931 2890 2780 2842
Random Seed 2 2959 2847 2817 2820
Random Seed 3 2827 2846 2934 2836
DISA Packets 0 173 8860 2410

Each experiment yielded a list of values representing the processing time required for
each packet header to traverse the ACL. The mean processing time was computed for
each set. Figure 6 provides a comparison of the various mean processing times associated
with packet headers scanned against varying lengths of the AFIT ACL. In lieu of plotting
three separate lines representing the random data sets, the depicted value represents the
average value of the three random data set means. For example, for the AFIT ACL of
length 67, the mean processing times associated with the random data sets were 1.525,
1.527, and 1.535 microseconds (ts); the average value of the means was 1.53 pus. The
motivation behind combining the three mean values of the random data sets was an
attempt to ensure the graph remained legible.

Figures 6 and 7 represent the results of the various experiments accomplished using
the ACL Model with the AFIT access control list. In each case, the results show a linear
grdwth in the mean processing time required for a packet header to pass through the

varying length ACLs. In general, most of the incoming packets pass through the entire
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ACL; therefore, we expect the observed linear growth of the packet latency to be worst
case. Sublinear growth in packet latency can be expected by simply fine tuning the ACL.
Fine tuning the ACL involves following the optimization guidelines outlined in Section
5.4. In nearly all cases, the rise over run of the mean processing values is within 10
nanoseconds (ns) of each other (less than 1% difference). Comparing the 24 ns it takes to
complete a single Mask Check (discussed in Section 4.4.3.2) to the difference in the rise
over run value, 10 ns is equivalent to approximately two ACL Model instructions. In
relation to the mean processing time for a single packet, 10 ns represents approximately

0.6 percent of the total time.
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Figure 7 merges the results shown in Figure 6 into a single line representing the
overall mean packet processing times associated with varying lengths of the AFIT access

control list. As pointed out earlier, the results show a linear growth in the mean

processing time.
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Figure 7. Mean Processing Times for Varying Length AFIT ACL101

The next four charts were compiled in the same manner as described for Figures 6 and
7; they depict the values computed for the two DISA ACLs (101 and 199). The following

results identify a linear growth in the packet processing times.
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5.2.2 Implications of Findings

To put the results shown above into perspective, it is necessary to reiterate that the
ACL Model represents a single component of a router. Therefore, the packet latency
determined by the ACL Model is only a single component in the total service time per
packet passing through the router. As mentioned in Section 4.2, this research focused on
the routers located at the outer edge of a network. Therefore, the router is a gateway to
the network and it is reasonable to expect the flow of packets to be large.

As an ACL grows, the packet latency increases, thus affecting the overall service
time. The consequence of the packet service time increasing is the fact that incoming
packets are required to wait in a queuing mechanism longer. The loss of packets could be
the result of an access control list becoming too large. The queuing mechanism may
become saturated and no longer capable of storing incoming packets due to the increased
service times.

It is necessary for an organization to identify “choke points” within its router and
catalog the various approaches to correct the problems. An organization may have to
reduce the length of its ACL, or increase the size of the queuing mechanism on the router
to compensate for the effects of surges in packet arrivals.

5.3 ACL Optimization Efforts

The study of the effects rearranging an access control list has on the overall
processing time was very informative and beneficial. Within this section, the results of
the optimization efforts on the AFIT and DISA ACLs are described. To aid in the

description of the findings, tables are utilized to identify changes in processing times
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based on the optimization efforts. A complete set of supplemental graphs designed to
support the tables and text can be found in Appendix D.

The following data quantifies the output of the ACL Model. The results of this
research are limited to the sample data and access control lists provided for this thesis
effort.

5.3.1 Simulation of the AFIT ACL and the Results
5.3.1.1 Characterization of the Original AFIT ACL

The AFIT ACL in its original form uses a combination of a “permit-all/deny all”
policy. The ACL denies packets with specific IP addresses while implicitly permitting
the rest. A TCP or UDP packet is denied if it is destined for a certain machine; however,
the packet is allowed into the AFIT Network if the destination port meets specific criteria.
All other TCP and UDP packets are implicitly denied. All ICMP packets are denied. The
ACL is designed to completely isolate sub-networks within the AFIT Network. The ACL
in general is organized to a certain extent and optimized for ease of maintenance;
however, there is room for improvement in terms of ordering and the effective use of
terminator entries.

Table 11 identifies the mean packet latency achieved by running the ACL Model with
the two input files and three randomly generated data sets identified in Table 10, against
the original AFIT access control list. The values in the “Overall Mean” column are
considered baseline values and are used to compare the results of the various optimization
attempts. Refer to Figures 27 — 31 in Appendix D for a graphical representation of the

protocols grouped by processing time.
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Table 11. Mean Processing Time per Packet (us) — AFIT ACL Original

Protocol
Overall
Input Data IP ICMP TCP UDP Mean

AFIT 1.2974 1.0512 2.2107 2.4048 | 1.3507
Random Seed 1 1.2463 1.0248 1.9183 1.9376 1.5253
Random Seed 2 1.2465 1.0248 1.9187 1.9373 1.5271
Random Seed 3 1.2465 1.0248 1.9187 1.9377 1.5350
DISA N/A 1.0248 1.9189 1.9368 1.9092

5.3.1.2 Data Sample Frequency Analysis

A frequency analysis of the incoming AFIT IP packet headers provided the necessary
data to aid in the optimization attempt of the AFIT access control list. The first type of
frequency analysis conducted consisted of identifying source ‘addrcsses specifically
singled out in the ACL. The AFIT IP packet headers available had no matching entries in
the ACL, since the AFIT ACL filtered out the ones that did match. Therefore, the next
step involved accomplishing a frequency analysis based on the distribution of packet
headers representing each type of protocol in the input files and randomly generated data.
As mentioned earlier, two different input files and three randomly generated sets of IP
packet headers were used throughout this thesis effort, each consisting of 11,443 entries.
5.3.1.2.1 AFIT ACL Optimization Attempt and Results |

As shown in Table 10, the majority of the incoming packets to AFIT were of the type
IP, followed by the TCP, UDP and ICMP protocols. Therefore, the access control list
optimization attempt involved moving all ACL entries responsible for singling out IP
packet headers to the top of the list. The IP grouping was terminated with the following

terminator:

access list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255
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The above terminator was originally located at the end of the ACL and was designed to
implement the “permit all IP” policy. In a similar manner the TCP and UDP entries were
grouped together and placed in their proper position within the ACL based on the packet
distribution. At the end of the TCP and UDP groups a terminator entry was entered,
designed to deny packets not meeting the defined exit criterion. The purpose of utilizing
terminator entries was to prevent an incoming packet from being scanned beyond the
applicable protocol section in the ACL.

The results of the optimization attempt of the AFIT ACL were very positive, the
processing time (packet latency) associated with each packet dropped in all cases except
UDP packets. The IP packet mean processing time fell from 1.2974 ps to 0.7095 us, a
decrease in IP packet latency of 45%. Table 12 identifies the mean packet latency
achieved by running the two input files and three randomly generated data sets against the
“optimized” AFIT ACL101. The overall mean processing time for AFIT packets dropped
by more than 0.56 ps or 41%. Refer to Figures 32 — 36 in Appendix D for a graphical
representation of the protocols grouped by processing time.

Table 12. Mean Processing Time per Packet (iis) - AFIT ACL Optimization Trial

Protocol
Overall
Input Data IP ICMP TCP UDP Mean

AFIT 0.7095 0.8064 1.9803 2.4624 0.7879
Random Seed 1 0.7207 1.0824 2.0238 2.0433 1.4571
Random Seed 2 0.7210 1.0824 2.0243 2.0429 1.4575
Random Seed 3 0.7209 1.0824 2.0243 2.0433 1.4727
DISA N/A 1.0824 2.0245 2.0424 2.0140

The decreases in the overall mean packet latency for the randomly generated data sets
were to be expected. Although the organization of the AFIT ACL was tuned for the

arrival of AFIT packet headers, the use of terminator entries made it possible to achieve
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performance gains with the randomly generated packet headers. Table 10 contains the
protocol distribution for the randomly generated packets. The overall mean latency
increased for packets destined for DISA routers. The AFIT ACL was organized based on
a large number of IP packets arriving at the router interface; the DISA input data set
contained zero (0) IP packets and the majority of its contents were of the type TCP.
Therefore, all of the DISA TCP packets were required to be scanned against the entries
designed to capture IP packets (protocol check) in addition to passing through all of the
TCP checks. Outside of grouping the ACL entries by protocol and placing them in the
appropriate order, the primary optimization technique responsible for the decrease in
overall packet latency was attributed to the use of terminator entries.
5.3.1.2.2 AFIT ACL Modification and Results

This test involved moving the single ICMP entry to the top of the ACL, while
preserving the order of the access control list as proposed in the preceding section. This
experiment was designed to illustrate the impact a single misplaced ACL entry can have
on the overall mean processing time.

The results of moving the ICMP entry to the top of the list increased the overall
packet latency in all cases except UDP packets. Table 13 identifies the mean packet
latency achieved by running the two input files and three randomly generated data sets
against the modified form of AFIT ACL. The overall mean rose 0.0128 pus or 1% as
compared to the results of the optimization attempt. This increase in packet latency
represents a small increase in the overall mean calculated in the previous test. Refer to
Figures 37 — 41 in Appendix D for a graphical representation of the protocols grouped by

processing time.
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Table 13. Mean Processing Time per Packet (us) - AFIT ACL Modification Trial

Protocol
Overall
Input Data IP ICMP TCP UDP Mean

AFIT 0.7250 0.1008 1.9803 | 2.4480 0.8007
Random Seed 1 1.3375 1.0680 | 2.0094 | 2.0289 1.6044
Random Seed 2 1.3378 1.0680 | 2.0099 | 2.0285 1.6063
Random Seed 3 1.3981 0.9792 1.5008 1.4814 1.3409
DISA N/A 1.0680 | 2.0101 2.0280 1.9996

5.3.1.3 Summary of the AFIT Results and Recommendations

The majority of the processing time improvements were derived by simply reordering
the original ACL based on a frequency analysis of the incoming packet header’s protocol
type and the use of terminator entries. The appropriate terminator statement, dependent
upon an organization’s security policy, was placed at the end of each protocol section. If
the appropriate protocol group does not capture the packet, the use of a terminator entry
prevents the packet from traversing the remaining ACL entries. Table 14 represents the
total processing times for each input data to pass through the respective ACL, all times
are in milliseconds. The total processing time of the AFIT input data dropped from 15.45
ms for the original ACL to 9.01 ms for the “optimized” ACL, thus representing a
performance gain of 60%.

Table 14. Total Processing Times for Input Data by Various ACLs (ms)

Input Data
Random | Random | Random
Access Control List AFIT Seed 1 Seed 2 Seed 3 DISA
AFIT — Original Form 15.4563 | 17.4542 17.4743 17.5651 21.8465
AFIT — Optimization Effort 9.0160 16.6738 16.6785 16.8528 | 23.0466
AFIT — Modification 9.1625 18.3590 18.3815 15.3439 | 22.8818
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Based upon the frequency analysis of the packet headers provided by AFIT and the

testing of various ACL optimization attempts, the following set of recommendations are

offered:

Consolidate all of the IP entries into a single grouping and move the entries to the top
of the access control list. Based on the security climate of AFIT, place a “permit” all

others entry at ‘the end of the IP grouping. Such as:

access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

Consolidate all of the TCP entries into a single grouping and place them immediately
after the IP group. Once again, ensure a terminating statement is placed at the end of
the TCP section to capture TCP packets not already singled out by the previous
entries.

Entries related to the control of UDP packets should be handled in the same manner

as the TCP entries and placed immediately following the TCP group.

The final two entries within the AFIT ACL focuses on capturing ICMP packets; the

first entry designed to permit ICMP packets destined for the AFIT Network, while the

second entry denies all other ICMP packets.

e The second ICMP entry is not needed since access control lists implemented in a
Cisco router implicitly “deny all” packets passing through the entire list.
However, by explicitly stating the desired outcome of all other ICMP packets, the
entry adds clarity as to how packets are ultimately handled by the access control

list.
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5.3.2 Simulation of the DISA ACL and the Reshlts
5.3.2.1 Characterization of the Original DISA ACL

The DISA ACL in its original form uses a combination of “permit” and “deny”
policies. For example, a set of IP entries is designed to deny specific IP addresses, while
permitting access to all others. On the other hand, only TCP and UDP packets from
certain addresses are permitted, while all other packets are denied. The DISA ACL
permits all ICMP packets. In general, the entries of the DISA ACL are assembled
indiscriminately. In the ACL there are several IP entries at the top and bottom, broken up
with TCP and UDP entries in the middle. The TCP and UDP packets appear to be
organized with the intent of easing ACL maintenance. Based on the results of the AFIT
optimization efforts, the same types of recommendations apply for the DISA ACL.

Table 15 identifies the mean packet latency achieved by running the two input files
and three randomly generated data sets, identified in Table 10, against the original DISA
access control list. The values in the “Overall Mean” column serve as baseline values
and are used to compare the results of the various optimization attempts. Refer to Figures
42 — 46 in Appendix D for a graphical representation of the protocols grouped by
processing time.

Table 15. Mean Processing Time per Packet (us) — DISA ACL Original

Protocol
Overall
Input Data IP ICMP TCP UDP Mean

DISA N/A | 0.9792 1.5119 1.4899 1.4992
Random Seed 1 1.3984 0.9792 1.5009 1.4815 1.3381
Random Seed 2 1.3985 0.9792 1.5005 1.4815 1.3397
Random Seed 3 1.3981 0.9792 1.5008 1.4814 1.3409
AFIT 1.4118 0.9792 1.5002 1.4842 1.4155

66




5.3.2.2 Data Sample Frequency Analysis

A frequency analysis of the incoming DISA packet headers provided the necessary
data to aid in the optimization of the DISA access control list. The first type of frequency
analysis conducted consisted of identifying source addresses specifically singled out in
the ACL. The DISA packet headers available had no matching entries in the ACL.
Therefore, the next step involved accomplishing a frequency analysis based on the
distribution of packet headers representing each type of protocol in the input file. Table
10 categorizes the contents of the DISA input file, based on the packet header’s protocol
type.
5.3.2.2.1 DISA ACL Optimization Attempt and Results

As shown in Table 10, the majority of the incoming packets to DISA were of the type
TCP, followed by the UDP and ICMP protocols. There were no IP packets in the data set
from DISA. Therefore, the ACL optimization attempt for the DISA ACL involved
moving entries responsible for singling out TCP packet headers to the top of the list.
Similarly, the UDP, ICMP and IP entries were grouped together and placed in their
proper position within the ACL based on the packet distribution. At the end of each of
these groups a terminator entry was placed, to prevent an incoming packet from being
scanned beyond the applicable protocol section in the access control list.

The resultsvof the optimization attempt were very positive; latency associated with
each packet dropped in all cases. The mean processing time of TCP packets fell from
1.51 ps to 0.88 s, a decrease in TCP packet latency of 42%. Table 16 identifies the
mean packet latency achieved by running the two input files and three randomly

generated data sets against the “optimized” form of the DISA ACL. The overall mean for
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DISA packets dropped by more than 0.55 s or 36%. Refer to Figures 47— 51 in
Appendix D for a graphical representation of the protocols grouped by processing time.

Table 16. Mean Processing Time per Packet (us) — DISA ACL Optimization Trial

Protocol
Overall
Input Data IP ICMP TCP UDP Mean

DISA N/A 0.7632 0.8856 1.1805 | 0.9459
Random Seed 1 1.4272 0.7632 1.2530 1.3870 | 1.2072
Random Seed 2 1.4273 0.7632 1.2447 1.3859 | 1.2069
Random Seed 3 1.4271 0.7632 1.2325 1.3822 1.2010
AFIT 1.4406 0.7632 0.8738 1.1746 | 1.4122

The decreases in the overall mean packet latency for the randomly generated data sets
were to be expected. Although the organization of the DISA ACL was tuned for the
arrival of DISA packet headers, the use of terminator entries made it possible to achieve
performance gains with the randomly generated packet headers. Table 10 contains the
protocol distribution for the randomly generated packets. The overall mean latency
increased for packets destined for AFIT routers. The DISA ACL is organized based on a
large number of TCP packets arriving at the router interface; the AFIT input data set
contained few TCP packets while the majority of its contents were of the type IP.
Therefore, all of the AFIT IP packets were scanned against the entries configured to
capture TCP, UDP and ICMP packets (protocol check) in addition to passing through all
of the IP checks at the end of the ACL. Outside of grouping the ACL entries by protocol
and placing them in the appropriate order, the primary optimization technique responsible

for the decrease in overall packet latency can be attributed to the use of terminator entries.
5.3.2.2.2 DISA ACL Modification and Results

This test involved moving the single ICMP entry from its position between the UDP

and IP entries to the top of the ACL, while preserving the order of the access control list
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as proposed in the preceding section. This experiment was designed to illustrate the
impact a single misplaced ACL entry can have on the overall mean processing time.

Table 17 identifies the mean packet latency achieved by utilizing the two input files
and three randomly generated data sets when scanned against the modified DISA ACL.
The impact of this modification is very small, the overall mean rose 0.0041 us (0.4%) as
compared to the results of the optimization effort. Refer to Figures 52 — 56 in Appendix
D for a graphical representation of the protocols grouped by processing time.

Table 17. Mean Processing Time per Packet (us) - DISA ACL Modification Trial

Protocol
Overall
Input Data IP ICMP TCP UDP Mean

DISA N/A 0.1008 0.9000 1.1949 0.9500
Random Seed 1 1.4272 0.1008 1.2600 1.3940 1.0433
Random Seed 2 1.4273 0.1008 1.2519 1.3930 1.0456
Random Seed 3 1.4271 0.1008 1.2399 1.3894 1.0399
AFIT 1.4406 0.1008 0.8882 1.1890 1.4115

5.3.2.3 Summary of the DISA Results and Recommendations

The conclusions concerning optimization techniques for the DISA access control list
are similar in content as those provided in Section 5.3.1.3 for the AFIT ACL. By
reordering the ACL entries based on a frequency analysis of the protocols associated with
the incoming packets and the effective use of terminator entries, the overall packet
latency can be minimized. Table 18 represents the total processing times fof the input
data to pass through the respective ACL, all times are in milliseconds. The total
processing time of the DISA input data dropped from 17.56 ms for the original ACL to

10.82 ms for the “optimized” ACL, thus representing a performance gain of 63%.
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Table 18. Total Processing Times for Input Data by Various ACLs (ms)

Input Data
Random | Random | Random
Access Control List DISA Seed 1 Seed 2 Seed 3 AFIT
DISA - Original Form 17.1554 | 15.3117 | 15.3306 | 15.3439 16.1978
DISA — Optimization Effort | 10.8231 | 13.8139 | 13.8101 13.7429 16.1596
DISA — Modification 10.8708 | 11.9390 | 11.9652 | 11.8998 16.1522

Based upon the frequency analysis of the packet headers provided by DISA and the

testing of various ACL optimizations, the following set of recommendations are offered:
e Consolidate all of the TCP entries into a single grouping and move the entries to the

top of the access control list. Based on the security climate of DISA, place a “deny”

all others entry at the end of the TCP grouping. Such as:

access-list 101 deny tcp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 neq 0

¢ Consolidate all of the UDP entries into a single grouping and place them immediately

after the TCP entries. Once again, ensure a terminating statement is placed at the end

of the UDP section to capture UDP packets not already singled out by the previous

entries.

e Move the single ICMP entry, permitting all incoming ICMP packets to pass through

the router, immediately after the UDP section.

e The final group of entries in the DISA ACL is designed to control the flow of IP

packets through the router. The last entry of the IP group (and consequently the ACL)

is the “Permit” all other IP packets.

5.4 ACL Construction Guidelines to Enhance Router Performance

The following six steps identify a set of guidelines to follow when creating an

Extended IP Access Control List or modifying an existing one, thereby ensuring router
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performance is maximized. The final step highlights the importance of fine tuning the
ACL based on local needs.

Step 1: Accomplish a frequency analysis.

The first step to take in optimizing an Extended IP Access Control List involves
accomplishing a frequency analysis of the IP packets arriving at the router interface,
where the ACL to be evaluated is assigned. The data collected should be from various
times of the day and week, providing a well-rounded sampling of packets to be analyzed.
During the frequency analysis, the individual responsible for analyzing the incoming IP
packets accomplishes two steps, the first is to identify the distribution of packets based on
their protocol type. The second step in analyzing the data entails identifying source
addresses specifically singled out in the ACL and noting their arrival frequency.

Step 2: Group ACL entriés by protocol.

This step involves modifying the ACL from its original form, by arranging all like
protocol ACL entries into distinct groups. In most instances there will be one group of
entries for each protocol covered by the Extended IP ACLs (IP, TCP, UDP and ICMP).

Step 3: Position groups in proper order within ACL based on frequency analysis data.

Based on the data acquired during the frequency analysis phase, take the various
groups of ACL entries created in the last step and place them in the proper order in the
ACL based on the protocol distribution.

To clarify, if the majority of the incoming packets to the router interface were of the
type IP, followed by the UDP, TCP, and ICMP protocols, move the entire group of IP
ACL entries to the top of the ACL. The UDP, TCP and ICMP groups would follow the

IP entries in their respective order.

71




If it is determined from the analysis of the sample packets that a majority of the
packets arrive from a siﬁgle source then it may be necessary to deviate from the strict
group setup. It would still be beneficial to keep the groups by protocol; however, place a
single entry at the top of the ACL, to capture the specific source address and process it
immediately. According to Phillip Harris, Senior Consulting Engineer for Cisco, if
- certain addresses frequently arrive against a specific ACL, performance can be increased
if the applicable entry in the ACL is moved up in the list [Har98]. By moving the entry
up in the access control list, the router matches the incoming packet to the entry sooner
and less overall processing is required. This part of Step 3 was not characterized in our
set of experiments, since there was no dominant set of packets identified as coming from
a single address.

Step 4: Proper use of terminator entries.

When grouping ACL entries by protocol type, it is imperative that each group is
terminated with the proper terminator entry. Effective use of the terminator entries can
reduce overall packet processing times. By placing a terminator entry at the end of a
protocol group, it prevents incoming packets from being scanned beyond the applicable
protocol section. Deciding whether to “deny” or “permit” packets not specifically singled
out by the preceding ACL entries should be based on an organization’s security policy.
The use of terminators also makes an ACL easier to read. In addition, the extra entries
make the‘ final status of packets not singled out in the appropriate protocol group very
explicit. In general, when working with “wildcard” masks in the terminator entries, care
must be taken by the ACL administrator to avoid changing the filtering outcome.

Step 5: Focus on order of entries within each group.
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Common sense dictates that the ordering of the entries within each protocol group
may be important. The maintainer of an ACL should place entries directly supporting the
interests of partners or clients ahead of entries designed to prevent access to known
malefactors. It is more advantageous to make a hacker’s incoming packets wait, versus a
valid business transaction. During a Denial of Service attack, everyéne has to wait;
however, this methodology reduces service times during normal network op‘erations.

Step 6: Fine-tune the ACL based on local needs.

The first five steps identified the general guidelines to follow when initially trying to
optimize an access control list. This step is designed to bring to light other situations that
can be taken into consideration when creating or modifying an ACL. System
administrators can accomplish their own tests, and fine-tune the ACL based on local
operations. Look at the organization’s security policy and ensure the ACL meets the
described objectives. Ask the crucial question, “Are the network customers’ and users’
needs being met by the current ACL configuration?”

5.5 Summary

The access control list simulation system, ACL Model, was designed to test the
effects growing ACLs have on network router performance. The data presented in the
first part of this chapter showed a linear growth rate in the packet processing times. The
linear growth in packet latency was not expected, since the purpose of the research was to
identify the point where an ACL becomes too large and system performance is severely
degraded. However, this research and data does show that as an access control list grows,
the mean packet latency increases. An increase in packet latency caused by the ACL

component of a router increases the overall service time required to process each packet
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passing through the router. Increasing the service time can have a negative impact on
operations if packets are lost due to the queuing mechanism becoming full and not
accepting any other incoming packets.

The second portion of the chapter detailed how the ACL Model proved to be
beneficial in terms of identifying guidelines designed to improve router performance.
Section 5.3 focused on the results of various optimization efforts of the AFIT and DISA
ACLs. It was determined that the most effective performance enhancing optimization
was a combination of grouping the entries by protocol, ordering the groups in the ACL
based on the protocol distribution and the use of terminator entries. Section 5.4 focused
on identifying six steps an individual responsible for maintaining ACLs can follow to

enhance router performance.
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6. Conclusion

6.1 Introduction

The purpose of this research effort was to determine how the growth of an access
control list affects packet flow and router CPU consumption, and identify the specific
length of an access control list such that overall router performance is degraded. The
secoﬁdary goal was to provide insights on how access control lists can be optimized.

This thesis described the ACL Model, a tool designed to simulate the packet
validation component contained within a network router. There are many components
contributing to the overall service time associated with a packet passing through a
network router; however, the ACL Model only computed the resultant latency of a packet
passing through the packet validation component of a router.

This chapter highlights the final results achieved during this research effort. It also
addresses a possible future research topic. The chapter concludes with summary remarks.
6.2 Conclusions

This research was designed to accomplish the goals described above. Conclusions
regarding each goal are presented individually, starting with findings on the performance
issues. This section concludes with a discussion of findings concerning optimization
techniques.

6.2.1 Summary of Performance Issues

A comparison of the applicable simulations accomplished for this research effort

showed that the packet latency grew in a linear fashion as the length of the ACL grew. It

was expected that the packet processing times increased as the assigned ACL grew, linear
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growth in packet latency was not expected (refer to Figure 4 in Chapter 3). Exponential
growth was anticipated in order to identify a discernable “knee” in the performance curve.
If a “knee” could be determined, then identification of the length of an ACL where router
CPU consumption became noticeably degraded could be made. Since the growth of the
packet latency was linear, it was impossible to identify where the network router CPU
had to work harder based on the length of the ACL. The linear growth seen in the various
experiments are considered worst case scenarios. By utilizing the optimization guidelines
presented in Chapter 5, system administrators can fine-tune their ACLs and expect
sublinear growth rates in the mean packet latency.

In general, as an ACL grows the packet latency increases, thus affecting the overall
service time. As the overall service times increase, incoming packets are delayed in a
front-end queuing mechanism. The end result of packets being held in a queue could be
the loss of packets, due in part by the queuing mechanism becoming saturated and no
longer capable of storing incoming packets. System administrators must be ever vigilant
in ensuring their ACLs are not affecting the performance of their router.

6.2.2 Summary of the Optimization Efforts

The next several paragraphs highlight research ﬁndings concerning the methodology
to follow in optimizing an ACL. The study of the effects rearranging an access control
list has on the overall processing time was very informative and beneficial.

In both cases where optimization of the AFIT and DISA ACLs occurred, the overall
mean packet latency was reduced by more than half a microsecond. A decrease of 0.5 s
doesn’t appear to be a large value; however, if an average packet requires approximately

1.49 us to pass through the packet validation component of a router the decrease appears
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to be significant. The previous figures represent a processor improvement of
approximately 34%. The total processing times for the same cases characterize an overall
performance gain of approximately 61%.

The reduction in processing time was realized by accomplishing several steps. The
first step in optimizing an ACL involved accomplishing a frequency analysis of the
incoming packets. Upon completion of the frequency analysis, all of the entries in the
ACL were grouped by protocol type; each protocol grouping was moved to the
appropriate location in the ACL as identified by the data analysis. The final step involved
utilizing terminator entries after each grouping to trap packets not meeting the criteria
specified by the preceding ACL entries.

6.3 Possible Model Inadequacies

As explained in Chapter 3, the simulation route was chosen over both analytical
modeling and the measurement techniques. It may be beneficial to locate a router and run
similar experiments as accomplished in this thesis effort; it would be interesting to
compare the results of the two different techniques. Since the details of the operations
occurring within a router are proprietary, it was necessary to formulate the most logical
flow of packets through a router. Even though the ACL Model was validated by an
individual from Cisco, the proprietary nature of the internal components made it difficult
to ascertain the instruction counts; the instruction counts calculated for each module
could be a too high or too low. Inan attempt to demonstrate the robustness of the
conclusions, a sensitivity analysis was accomplished. The analysis showed the processing

time would rise as the instruction count increased, as expected and more importantly, the
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mean processing times always grew in a linear fashion regardless of the specific mix of
instruction counts.
6.4 Areas of Model Improvement

The ACL Model did not implement any ACL processing enhancements since these
enhancements are not utilized at AFIT or DISA. However, further research in the area of
ACL performaﬁce may warrant the implementation of the enhancements discussed in
Section 2.5. The process enhancements include the Fast Switching Path for standard IP
ACLs, NetFlow Switching, Distributed Switching, and Cisco Express Forwarding for
Extended IP Access Control Lists.

6.5 Recommendation for Future Research

One of the biggest concerns over the next couple of years is the introduction of
Internet Protocol version 6 (IPv6). IPv4 is currently in use around the world utilizing 32-
bit addressing. The move to IPv6 increases the addressing scheme to 128-bits. Of
interest is the effect 128-bit addressing has on access control lists and the amount of time
required to process incoming packets.

In an attempt to ascertain the affect 128-bit addressing would have on the mean
processing time per packet validation, the ACL Model was used. Using the ACL Model
to determine the packet latency in this case is not very accurate without modifying the
model to handle the wider addresses; however, it provides a rough figure to build upon.
To accomplish this test, the Mask Check instruction count was increased to sixteen versus
four. The sixteen instructions would be equivalent to accomplishing four separate mask

checks. The results of the simulation showed the overall mean processing time again
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increases linearly. To properly address the 128-bit addressing topic, modifications to the
ACL Model are required.
6.6 Summary Remarks

As the world becomes more interconnected through the use of the Internet, it is
imperative organizations take the proper steps to ensure the security of their networks is
maintained. Organizations can no longer isolate their networks from the rest of the world
and still remain competitive. An organization willing to compete in the world market
must take the necessary precautions to protect its networks, the systems located on those
networks, and its mission critical data. There are performance issues associated with the
use of access control lists (ACL); however, if ACLs are implemented properly and

periodically reviewed, a secure network can be attained.
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Appendix A. Details of IP Access Control Lists

This appendix is designed to aid the reader in identifying the various parts of an
access control list. Not all of the intricacies are identified; however, the more commonly
used notations are characterized. The sample entries used in this appendix were compiled
from various sources to ensure the many differing constructs are depicted. Several
examples of standard IP access control lists are given. However, contingent upon the
primary focus of this thesis effort, the majority of the examples contained here are based
on Extended IP Access Control Lists.
A.1 IP Access Control Lists

Standard IP Access Control List specifications:

|acces$—list 1-99 {permit|deny} {address} {mask} |

In the following example, network 109.90.0.0 is a Class A network whose second
octet specifies a subnet. The third and fourth octets of a network 109.90.0.0 address
specify a particular host. Using access list 2, the router would accept one address on host
20 and reject all others on that host. The last line of the list depicts the router accepting

addresses on all other network 109.90.0.0 subnets.

access-list 2 permit 109.90.20.3
access-list 2 deny 109.90.20.0 0.0.0.255
access-list 2 permit 109.90.0.0 0.0.255.255

Standard IP access control list entries contain an implicit mask. For instance, if the
mask is omitted from an associated IP host address access list specification, 0.0.0.0 is

assumed to be the mask. Consider the following example configuration:

access-list 1 permit 0.0.0.0
access-1list 1 permit 109.90.0.0
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access-1list 1 deny 0.0.0.0 255.255.255.255

For this example, the following masks are implied in the first two lines:

access-list 1 permit 0.0.0.0 0.0.0.0

access-list 1 permit 109.90.0.0 0.0.0.0

The last line in the configuration (using the deny keyword) can be left off, since IP
ACLs implicitly deny all other access. This is equivalent to ending the ACL with the

following command statement:

access-list 1 deny 0.0.0.0 255.255.255.255

A.2 Extended IP Access Control List

Extended IP Access Control List specifications:

access-list 100-199 {permit|deny} {ip|tcp|udp|icmp} {source} {source-
mask} {dest} {dest-mask) {lt]|gt]|eg|neqg dest-port}

In the following example, the first line permits any incoming TCP connections to
hosts 109.90.0.0 with destination port addresses greater than 1023. The second line
permits incoming TCP connections to the SMTP port (25) of host 109.90.1.2. The last

line permits incoming ICMP messages for error feedback.

access-list 102 permit tcp 0.0.0.0 255.255.255.255 109.90.0.0 0.0.255.255 gt 1023
access-list 102 permit tep 0.0.0.0 255.255.255.255 109.90.1.2 0.0.0.0 eg 25
access-list 102 permit icmp 0.0.0.0 255.255.255.255 109.90.0.0 255.255.255.255

Similar to the standard ACLs, the last line in the configuration (using the deny
keyword) can be left off, since IP access control lists implicitly deny all other access.

This is equivalent to completing the ACL with the following entry:

access-list 102 deny ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

One final example of an Extended IP Access Control List is provided below. There
are minor differences in the syntax used, to show variations that can be utilized to ease

ACL maintenance. To illustrate this idea, note that the first line of the example is in the
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same format as used in the previous examples. However, for the TCP and UDP entries,
0.0.0.0 255.255.255.255 has been replaced with the keyword any. In essence the
TCP entry is stating, permit packets from anywhere heading for destination of
109.90.20.13 as long as they arrive on port address 80. The final entry denies ICMP

packets from anywhere and destined for any destination to pass through the router.

access-list 101 deny ip 0.0.0.0 255.255.255.255 109.90.20.13 0.0.0.0
access-list 101 permit tcp any 109.90.20.13 0.0.0.0 eqg 80

access-list 101 permit udp any 109.90.20.0 0.0.0.255 eq 80

access-list 101 deny icmp any any )

A.3 Summary of Numerical Ranges

In the few examples presented above, the numbers after the phrase “access-list”
ranged from 1 to 102. In Table 19, the various protocols are identified, with each one
having a designated range of valid numbers. When reading an ACL, a person may
initially look at the number associated with the entries and determine what type of
protocol the ACL is designed to support.

Table 19. Summary of Numerical Ranges

Protocol Range
IP : 1--99
Extended IP 100--199
Ethernet type code 200--299
DECnet 300--399
XNS 400--499
Extended XNS 500--599
AppleTalk 600--699
Ethernet address 700--799
Novell 800--899
Extended Novell 900--999
Novell SAP 1000--1099
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Appendix B. Samples of Input ACLs and Packet Header Data
This appendix is designed to provide the format of the input data files. The data
provided below shows how the raw data was transformed into data useable by Designer.
The Single ACL Entry and Packet Header data structures were defined in Chapter 4, refer
to Table 8 and Table 9 as necessary to identify each field within the final format.
B.1 Single ACL Entry Data
Original format of an Extended IP ACL entry, designed to deny IP packets to a

specific address:

access-list 101 deny ip 0.0.0.0 255.255.255.255 109.90.20.13 0.0.0.0

Final format:

0 0 0 0 O 0 255 255 255 255 109 90 20 13 0 O O O O O

Original format of an Extended IP ACL entry, designed to permit any TCP packet into

a specific address and port:

access-list 102 permit tcp 0.0.0.0 255.255.255.255 128.88.1.2 0.0.0.0 eqg 25
Final format:

1 2 0 0 0 0 255 255 255 255 128 88 1 2 O O O O 3 25

B.2 IP Packet Header Data

Original format of a sample IP packet header:

SrcIf SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Pkts B/Pk Active
Hs5/0 207.46.142.23 Se2/7 131.48.192.183 06 0050 O4FE 5 41 0.4

Final Format:

2 207 46 142 23 131 48 192 183 80 1278
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Appendix C. Access Control List Model

To support this thesis, the Access Control List Model was built to simulate the packet
validation process occurring within a network router. In this appendix, each Designer
module of the ACL Model is discussed in detail to include an explanation of its function,
a description of the data flow, and if applicable, a description of how the instruction count
was calculated. The following table is a roadmap for this appendix; the model operation
as explained in this appendix is top-down and meant to provide an overall view of the
path an IP packet traverses during the packet validation process.

Table 20. Summary of Modules by Operation

Operation Module Name
Initialize the Simulation Read ACL File
Release of Packets — Loop
Arrival of IP Packets into Router Read Packets — File
Read Packets — Random
While Loop
Single ACL from Vector

Check All Module
Check All & Port Module
Check Protocol

Check Source

Mask Check

Check Destination
Check Port

Check w/o Port

Packet Validation

A brief addendum concerning the terminology used throughout this appendix: the
terms “module” and “block” have two distinct meanings. Module will be used to refer to
a grouping of Designer functions, performing several operations on a data structure
traversing that component. A block is a primitive operation on a data structure, such as a

delay function.
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C.1 Access Control List (ACL) Model

Due to inheritance, many modules use the same parameters as other modules. Since

the same parameters may appear in several modules, they will each be described once in

Table 21. The instruction count variables are discussed in detail with their respective

modules. Finally, there is an in-depth discussion of a subset of model parameters and

variables in the “Overview of the ACL Model Parameters” section of Chapter 4. Refer to

it as necessary.

ACL Check - One Packet at a Time Release

[ 2-Dec-1998 13:02:07 ]

ACL in Memory

File Mem ACL

[M] File Mem Pkt

EI\Z] Packets in Memory

TP ACL File to Open

TP Number of Lines in ACL

TP Packet Header File to Open
TP Number of Packet Headers
Number of Packets Permitted
@ Number of Packets Denied

ACCESS CONTROL LIST MODEL

Release
of Packets
- Loop

Te cPi

Te clock Cycle Rate

TP while.False IC

TP While.True IC

TP Chk Pro.True IC

TP chk Pro.False IC

TP Mask Check IC

TTP Check Source 1C

TP chk Dest IC

TP chk w/o Port.True IC

TP Chk w/o Port.False IC
TP chk Port.True IC

TP Chk Port.False IC

TP Chk All&Port.True IC

TP chk All&Port.False IC

Figure 12. ACL Model Top Level System Module

The ACL Check — One Packet at a Time Release (Figure 12) is the ACL Model top-

level system module. This module ties together the two components responsible for

initializing the simulation at start time (Figure 13. Read ACL File Module) and the

reading of packets from an external file to be forwarded to the packet validation software




(Figure 14. Release of Packets - Loop Module). In the table below, each variable present
in the top-level schematic is identified and a summary of each provided.

Table 21. Top Level ACL Model Variables

Simulation Initial
Variables Value Purpose

ACL in Memory is a vector of varying length (between
different simulations) depending on the size of the
ACL in Memory Varying | ACL input file. Length of vector is calculated in the
following manner: (Number of Lines in ACL File * 20).
There are 20 elements in each ACL entry.

File Mem ACL is a pointer used to maintain the proper
File Mem ACL Pointer | position in the input ACL file, while reading values
from it and placing them into the ACL vector.

File Mem Pkt is a pointer used to maintain the proper
position in the input IP data file. This pointer is

File Mem Pkt Pointer | extremely important since the entire file is not read all
at once, only eleven values are read at a time from the
file. '

Packets in Memory is a vector of varying length

Packets in Memory Varying | (between different simulations) depending on the size
of the packet header data file.

Number of Packets 0 Number of Packets Permitted is discussed in Section

Permitted 4.3.3

Number of Packets 0 Number of Packets Denied is discussed in Section

Denied 4.3.3

ACL File to Open contains the directory path and
name of the file to open for the simulation. The ACL
input file is text based and the format is very specific.
For details on the specific format of the file refer to
Appendix B.

Set by

ACL File to Open user

Setby | Number of Lines in ACL variable is discussed in

Number of Lines in ACL user Section 4.3.2.2.

Packet Header File to Open contains the directory
path and name of the file to open for the simulation.

gizlf_‘et Header File to Sj; ebry The IP packet header input file is text based and the
format is very specific. For details on the format of
the file refer to Appendix B.
Number of Packet Setby | Number of Packet Headers variable is discussed in
Headers user Section 4.3.2.2. '

CPI holds the clock cycles per instruction. This value
is based on research [EsR91] and the particular RISC
CPI 1.2 chip utilized in the Cisco 7500 series router.
Additional information concerning this variable can be
found in Section 3.4.2.

Clock Cycle Rate identifies the speed of the
microprocessor, clocked in nanoseconds.

Clock Cycle Rate 5x 10° | Documentation shows that the Cisco 7500 Series
routers operate at 200 MHz. The equation for this
conversion can be found in Section 3.4.2.

Instruction count for the While Loop module when the

While False IC 5 false path is followed.
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Simulation Initial
Variables Value Purpose
. Instruction count for the While Loop module when the
While.True IC 4 true path is followed.
Instruction count for the Check Protocol module when
Chk Pro.True IC 1 the true path is followed.
Instruction count for the Check Protocol module when
Chk Pro.False IC 2 the false path is followed.
Mask Check IC 4 Instruction count for the Mask Check module.
Check Source IC 1 Instruction count for the Check Source module.
Chk Dest IC 1 Instruction count for the Check Destination module.
Instruction count for the Check w/o Port module when
Chk w/o Port.True IC 3 the true path is followed.
instruction count for the Check w/o Port module when
Chk w/ Port.False IC 2 the false path is followed.
Instruction count for the Check Port module if the true
Chk Port.True IC 1 path is followed.
Instruction count for the Check Port module when the
Chk Port.False IC 2 false path is followed.
: Instruction count for the Check All & Port module
Chk All&Port.True IC 3 when the true path is followed.
Chk All&Port.False IC 5 Instruction count for jhe Check All & Port module
when the false path is followed.
TSTOP is used to tell the simulation when to stop. If
TSTOP Setby | all of the incoming packet headers are not read from
user the file and TSTOP has been reached, the simulation
stops in midstream.
Global Seed is used specifically in the simulations
Global Seed Setby | where the IP packet headers were randomly
user generated. For this simulation effort three different
seeds were utilized.
Read ACL File ‘ [ 2-Dec-1998 13:03:02 ]
> g :"R’E% [} g :"R"E'gn TMACL in Memory
TMFile Mem ACL
Cinit D] > Enx(e)ﬁgteer g TP Number of Lines in ACL

TP ACL File to Open

ACL Vector
Size

Init
ACL Vector

ol

TMPFile Mem Pkt

TP Pkt File to Open

il

There are 20 slements in each ACL entry;
therefore, this "Do Loop* is accomplished
((Number of Lines in ACL * 20) - 1).

TP Number of Packet Headers

T TMPackets in Memory

subtracted because the loop is initialized to
0. This loop grabs 1 element from the file
at a time and enters the value in the vector.

[

Do Loop P

D wiParam 5|
a >]

Add Element
> to ACLAVector B

Read ACL >
File (INTEGER

Output Port
D

Figure 13. Read ACL File Module
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The Read ACL File module (Figure 13) starts by initializing the ACL Model; this step
involves verifying all of the Designer modules necessary for a successful execution are
present. Also accomplished during the initialization phase is the setting of all variables.
The model proceeds to open the Access Control List (ACL) and IP Packet Header files
for reading. Once the ACL file is opened, each element in the file is read and placed into
the ACL in Memory vector. As necessary during each simulation, blocks will access the
ACL values stored in the vector. This approach was preferred over continuous I/O disk
operations that could conceivably slow the simulation. In addition, having the entire
ACL in memory more accurately depicts how an ACL is stored in a router. Upon
completion of this module, control of the simulation returns to the ACL Model Top Level
System component, where the next system call activates the Release of Packets — Loop

module.

Release of Packets - Loop [ 2-Dec-1998 13:05:01]

- Random o fecp
OR 1P Clock Cycle Rate
Input oo 5 > > > Whie > o TP While.False I
5 Pit Check ooy Pkt Check AI P White.True I
StariTime Stop Time 1P Chk Pro.True I
[M] Found Flag 1P Chk Pro.False IC
[MIACL Row Counter P Mask Check IC
TP Number of Packet Headers P Number of Lines in ACL TP Check Source IC
[M] Packet Vector Counter fMACL Vector Memory 1P Chk DestIC
M Packet Vector Memory M Number of Packets Permitted 1P Chk wio Port.True IC
TuFile Pir TMNumber of Packets Denied 1P Chk wio Port.False IC

P chk Port.True IC

1P chk Port False IC

1P Chk All&Pont True IC
TP chk AllgPort False IC

Figure 14. Release of Packets - Loop Module

Up to this point all of the steps accomplished were part of the simulation
initialization. There are two variations of the Release of Packets - Loop module (Figure
14). The figure above is designed to read packet header data from a file specified by the

user. The second variation of the module generates random packet header data, based on
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a user specified Global Seed. The approach of reading the packets from a file was
necessitated in this instance due to a limitation in the size of vector allowed by Designer.
Attempts were made to place the entire test data sets (each file consisted of 11,443 lines,
a line was composed of 11 elements each) into a vector structure; however, Designer
could not manage a structure of such magnitude. Therefore, the simulation was designed
to read one line at a time from the file and placed them into a data structure called Packet
Header. Once the Packet Header data structure was populated it was released and thus
triggered the Pkt Check Start Time block, which entered the current simulation time into
the appropriate field in the data structure. The Packet Header is passed to the While Loop
module. Upon exiting the While Loop module the current simulation time is entered into

the appropriate field in the Packet Header data structure.

Read Packets - File  [2-Dec-1998 13:14:31 ]

Input Croate Isnggrr‘t;e Insert Insert Insert
> B Packet >11 > Dot1 Dt-r D t t
Header A A

Insert Insert Insert
) Destinati > Source 1, Destination | Output
Dot2 Dot3 Dot4 Port Port

A A A

A

Read File > Read Fils D Read File & Read File D]
=] ] 5 S
INTEGER! INTEGER INTEGER! INTEGER

T™mFite Pt

Figure 15. Read Packets - File Module

The Read Packets — File module (Figure 15) is responsible for reading the IP packet
header input file and placing them into the Packet Header data structure. Section 4.3.1.2
contains a copy of the Packet Header data structure definition, and Appendix B contains

a sample entry from the input file.
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Read Packets - Random [ 2-Dec-1998 13:05:27 ]
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B S

2 _lconst B>

Select
> Protocol

Figure 16. Read Packets - Random Module

The Read Packets — Random module (Figure 16) is designed to generate random
inputs into the Packet Header data structure. Each random generation block was given a
range from which values could be drawn. If the protocol was of the type TCP or UDP it
was necessary to generate source port and destination port values, otherwise the last two

entries were filled with zero (0).
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While Loop [ 2-Dec-1998 13:06:22 |

Single
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fMACL Row Counter TMNumber of Packets Permitted Tp white True I P Clock Cycle Rate
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TP Mask Check IC

ﬂP Check Source IC

TP Chk Dest IC

TP Chk wio Port.True IC

TP Chk wio Port.False IC
P chk Port.True IC

TP Chk Port.False IC

P Chk AllgPort.True iC

TP chk AllRPort False IC

[E ACL Vector Counter

Figure 17. While Loop Module

The While Loop module (Figure 17) is responsible for identifying the status of a
packet header passing through the packet validation component. The status of a packet
header passing through the While Loop module is maintained by the Found Flag variable.
The Found Flag when set to one (1) identifies to the program an entry has been found in
the ACL, get the next packet header. In the event the Found Flag is zero (0), the packet
header is scanned against the next ACL entry. When a packet arrives at the router
interface, it is identified as a new packet and it must be scanned against the assigned
ACL. The following rule is used to determine the next operation in the ACL Model.

WHILE NOT ACL Row Counter > # ACL Entries OR Found Flag = 1 DO

As long as the above condition is true, an entry from the ACL in Memory vector is

extracted and placed in the Single ACL Entry data structure, this action is accomplished in
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Figure 18. At this point the Packet Header and Single ACL Entry data structures have
been initialized with the proper data, and the structures begin to traverse the appropriate
path as designed in the model. |

In the éase where the end of an ACL has been encountered or a match was found, the
While.False Delay would be applied. Throughout this appendix, delay is dealt with in
terms of seconds. The instruction count for the While.False IC (5) variable is computed
in the following manner :

Instruction Result of Instruction

add ACL counter + 1 Increment the ACL line counter
slt Number of ACL Entries < Counter If the number of ACL entries is less than
counter, then set register to 1

" or SLT Result, Found It Result = 1, if Number of ACL Entries <
Counter OR Found It =1
beq Result of OR =1 Jump to Check All Module (Figure 19)
jump to Release of Packets module Jump out of the While Loop — Clock stopped.

At this point all variables are reinitialized.

The While.True IC (4) variable utilizes only the first four instructions of the set above,
since it needs to check the incoming Packet Header protocol with the next Single ACL
Entry type.

The ACL Model provides two viable paths the two data structures can traverse; the
first check in the program identifies the protocol type of the incoming packet. If the
packet is of the type TCP or UDP, the simulation routes the data structures to the Check
All & Port module (Figure 20). The Check All & Port module is comprised of four sub-
modules: Check Protocol, Check Source, Check Destination and Check Port. If the

incoming packet is of the type IP or ICMP, the data structures are routed to the Check w/o

* Note: The instructions used in calculating the module Instruction Count values are in pseudocode.
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Port Module (Figure 26); this module consists of the previously listed sub-modules

except Check Port.

Single ACL from Vector [ 2-Dec-1998 13:07:32 ]
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Figure 18. Single ACL from Vector Module

The Single ACL from Vector module is designed to sequentially read values (in-
groups of 20) from the ACL in Memory vector and place them into the Single ACL Entry
data structure. Section 4.3.1.1 contains a copy of the Single ACL Entry data structure
definition, and Appendix B contains a sample entry from the input file. The ACL Vector

Counter is an integer variable used to maintain the proper position within the vector.
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Check All Module [ 2-Dec-1998 13:08:20 ]
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aPon D P Chi DestIC
Module TP Chk wio Port.True IC

TP Chk wio Port.False IC
1P chk Port.True IC

P chk Port.False IC”
fip chk AlgPort.True IC
P chk AlaPort.False IC

Figure 19. Check All Module

The Check All Module (Figure 19) does not clontribute to the instruction count. This
module’s sole purpose is to identify the protocol value stored in the Packet Header data
structure and route the Packet Header and Single ACL Entry data structures to the
appropriate module. In the case where the IP packet is of type TCP or UDP protocol, the
data structures are forwarded to the Check All & Port module (Figure 20). The IP or
ICMP protocol packets are directed to the Check w/o Port module (Figure 26).

The following figures are in the order they are encountered if the TCP/UDP path is

followed and each check is successful.
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Check All & Port Module [2-Dec-1998 13:08:42 ]
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Figure 20. Check All & Port Module (TCP/UDP)

In the Check All & Port Module the Single ACL Entry and Packet Header data

structure are routed to the Check Protocol module (Figure 21). As the two data structures

emerge from Check Protocol, the Read Failed Check block is triggered. If the Failed

Check variable is greater than zero (0), control of the simulation is returned to the While

Loop module, where the next ACL entry is obtained and the process is started or a new IP

packet header is received. This basic flow is repeated for each of the remaining “Check”

modules.

The methodology used to determine the instruction counts for the Check All &

Port.False (2) and Check All & Port.True (3) variables are as follows:
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Instruction Result of Instruction

beq Select Action =0 Jump to DENY instruction

beq Select Action =1 Jump to PERMIT instruction

DENY jump to While Loop Packet is discarded

PERMIT jump to While Loop Packet allowed to flow through router

Check Protocol [ 2-Dec-1998 13:09:50 ]

152 BT ;5 ChkPro.True 5 Pkt Hdr Out
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TP Clock Cycle Rate
TP chk Pro.True IC
1P chk Pro.False IC

Figure 21. Check Protocol Module

| The first comparison between the incoming packet and the access control list occurs
within the Check Protocol module (Figure 21). The value associated with the Protocol
field in the Packet Header data structure is compared to the value in the Type field of the
Single ACL Entry data structure. If the two values are not equal the Failed Check flag is
incremented and the control of the simulation returns to the Check All and Port module.
When the protocol values are equal, the two data structures are passed to the Check
Source module.

The methodology used to determine the instruction count for the Check Pro.False (2)

and Check Pro.True (1) variable is as follows:

Instruction Result of Instruction

beq Packet Header.Protocol = Single Branch to the Check Source.Mask Check
ACL Entry.Type
jump to While Loop Protocol check failed return to While Loop
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Check Source [ 25-Jan-1999 10:15:15 ]
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Figure 22. Check Source Module

Upon a successful protocol check, the Check Source module (Figure 22) is the next
hurdle the incoming packet must overcome. Internet Protocol source and destination
addresses are 32-bits in length, for the purpose of this modeling effort each address was
decomposed into four 8-bit chunks (e.g., 129.92.1.2). In the example, the value 129 is
given the generic name “Source Dot 1” (Source can Be replaced by Destination if the
address is a Destination IP address); likewise, 92 is referred to as “Source Dot 2”.

As a packet arrives at the Check Source module, the “Source Dot 1” value in the data
structure is used as an input variable to the Mask Check module (Figure 23). Similarly

the “ACL Source Dot 1” and “ACL SourceMask Dot 1” from the Single ACL Entry data
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structure are used as inputs to the Mask Check module (Figure 23). Upon a failed mask
check, the Failed Check flag is incremented and the control of the simulation returns to
the Check All & Port module. If the “Source Dot 1” value passes the mask check, the
“Source Dot 2” fields and mask value is extracted from the applicable data structures, and
another mask check is performed. There are four “Dot” checks, if each check is
successful the two data structures are forwarded to the Check Destination module (Figure
24).

The Check Source instruction count (1) is simply one instruction, shown below. The

delay blocks are taken in the event one of the Mask Check modules fail.

Instruction Result of Instruction
jump to While Loop Return control of the simulation to the While
Loop module.

Mask Check [ 25-Jan-1999 10:11:33 ]
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If output is a 1, then the incoming number
passed the mask check.

Figure 23. Mask Check Module

Essentially the ACL Mask Check module (Figure 23) is the heart of the ACL Model.

All of the Designer modules explained thus far are required to control the flow of the
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packets through the router. The Mask Check module operates on the bit level, comparing
two numbers based on a “mask” value.

The Mask Check module was created by using logical bitwise operators, such as XOR
and OR. The formula used to calculate whether an incoming packet matches an entry in
the ACL can be seen below.

(not(A xor B)or M) =1 3)

The value associated with A represents the number to match from the ACL. Variable
B represents a portion of the incoming source or destination address of the Packet Header
data structure. M represents the mask value from the appropriate entry in the access
control list. If the result of the formula yields a 1, the incoming bit passed the check. The
result of each check is forwarded to the module responsible for initiating the check.

Computation of the instruction count for the Mask Check module is based on four

separate MIPS instructions. The instruction set is as follows:

Instruction Result of Instruction

xor AB Resultant value stored in C

xor c255 Resultant value stored in D

or DM Resultant value stored in E

beq E =255 Proceed to next Check Source.Mask Check

99




Check Destination [ 25-Jan-1999 10:16:30]
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Figure 24. Check Destination Module

The Check Destination module (Figure 24) is identical in construct as the Check

Source module, except that the destination addresses and mask fields are used. All fields

are forwarded to the Mask Check module for validation.

If part of the destination address fails any of the Mask Check modules, the Failed

Check flag is incremented. In the event the Failed Check variable is greater than zero, the

control of the simulation is returned to the Check All & Port module.

The Check Destination instruction count (1) is simply one instruction, shown below. -

The delay blocks are taken in the event one of the Mask Check modules fail.
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Instruction Result of Instruction

jump to While Loop Return to Check All & Port module.

Check Port [ 2-Dec-1998 13:09:06 ]
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Figure 25. Check Port Module

Each entry in an ACL, if it is specifically designed to filter TCP or UDP packets, will
have two extra fields — Operation and Port Number. The operator field can take on four
different forms, Greater Than, Less Than, Equal To, and Not Equal To. The ACL
administrator can specify, “I do not want to accept TCP or UDP packets from source
X.X.X.X to destination X.X.X.X, with a destination port address less than 601.” The
Check Port module (Figure 25) accomplishes the task of determining if the incoming
destination port address meets the criteria prescribed by the ACL entry being scanned.

At this point, if the TCP or UDP packet has passed all checks the data structures are
feturned to the Check All & Port module, where the next step is to determine the
appropriate action to be accomplished in regards to the packet. Each ACL entry has an
Action field, permit or deny, based on the value in this field one of two variables is

incremented — Number of Packets Permitted or Number of Packets Denied. In a router,
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packets passing all checks would be allowed to continue through the network if the
Action field is set to “permit”, while all others would be denied.

Dependent upon the path taken by the data structure, based upon the Single ACL
Entry.Operation field, one MIPS instruction is executed. For example if the Operation
was “Equal” the following instruction set would be applied to the Check Port.True (1)
and Check Port.False (2) delay blocks. All operations in this research effort require a

single instruction to execute.

Instruction Result of Instruction
beq Packet Header.Destination Port = If the result is equal, branch to ACTION of the
Single ACL Entry.Port Number Check All & Port or Check w/o Port module
Jjump to While Loop Return control to the While Loop
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Check w/o Port

[ 2-Dec-1998 13:09:31 ]
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Figure 26. Check w/o Port Module (IP/ICMP)

In the Check w/o Port module (Figure 26) designed for use with IP and ICMP
packets, the Single ACL Entry and Packet Header data structures are routed to the Check
Protocol module (Figure 21). As the two data structures emerge from the Check Protocol
module, the Read Failed Check block is tripped. If the Failed Check variable is greater
than zero, control of the simulation is returned to the While Loop module. This basic
flow is repeated for each of the remaining “Check” modules.

Similar to the flow of events in the TCP and UDP packets, if the IP or ICMP packet
has passed all checks, the next step is to determine the appropriate action to be
accomplished in regards to the packet. Each ACL entry has an Action field, permit or
deny, based on the value in this field one of two variables is incremented — Number of

Packets Permitted or Number of Packets Denied.
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The methodology used to determine the instruction count for the Check w/o

Port.False (2) and Check w/o Port.True (3) variable is as follows:

Instruction Result of Instruction
beq Select Action =0 Jump to DENY instruction
beq Select Action =1 Jump to PERMIT instruction
DENY jump to While Loop Packet is discarded
PERMIT jump to While Loop Packet allowed to flow through router

C.2 Instruction Count Variability

The total instruction count calc_:ulated for each iteration of the While Loop module is
dependent upon the composition of both the ACL entry and the incoming packet header.
The following examples provide some insight as to the variability of the instruction count
from one iteration of the While Loop module to the next.

An example of the shortest possible instruction count achieved for a single ACL entry
and a single packet header can be shown with the following entry from an ACL and the
pertinent data of an incoming packet header.

ACL Entry
access-list 101 permit ip 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255

Incoming Packet Header

Protocol icmp
Source Address 109.90.2.1
Destination Address 129.92.126.2

When an ACL entry is configured for a specific protocol, such as IP in the above
example, an incoming packet header of the type ICMP would fail the protocol check.
From the time this packet entefs the While Loop until it exits, a total of 10 instructions

have been executed.
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An example of the longest possible instruction count achieved for a single ACL entry
and a single packet header can be shown with the following entry from an ACL and the

pertinent data of an incoming packet header.

ACL Entry
Access-1list 101 permit tcp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 eq 25

Incoming Packet Header

Protocol tcp

Source Address 109.90.2.1
Destination Address 129.92.126.2
Source Port 80
Destination Port 35

In the above example the ACL entry is designed to permit all TCP packets from any
source address destined for any other address if the destination port is equal to 25. The
incoming packet header provided above meets all of the criteria exactly, allowing it to
pass through the router. From the time this packet enters the While Loop until it exits, a
total of 46 instructions have been executed.

C.3 Summary

This appendix has detailed the inner components of the ACL Model, as designed
using the BONeS Designer tool. Discussed was the flow of the two data structures
(Packet Header and Single ACL Entry) through the ACL Model and the steps involved in
scanning a packet header against a single entry from an ACL. Throughout this appendix
the methodology followed in determining an instruction count value for the various ACL
Model modules was explained. The last portion of the appendix addressed the topic of
instruction counts, highlighting the variability of the total instruction count from one

iteration of the While Loop module to the next.
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Appendix D. Supplemental Graphs
This appendix is designed to provide the reader a full complement of graphs to view
while reading Chapter 5. The included graphs encompass the results of each simulation
against the original and “optimized” ACLs. Each optimization of an ACL, required five
simulations: .
1. IP packets destined for a router with the applicable ACL assigned

2. Randomly generated IP packet headers (3 different seeds)

3. IP packets destined for a router with another a different ACL assigned
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Processing Time for Packet Headers Destined for AFIT
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Figure 27. Processing Time (PT) for AFIT Packets Utilizing AFIT ACL - Original

Processing Time for Packet Headers Randomly Generated (Seed 1)
Utilizing AFIT ACL 101 - Original
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Figure 28. PT for Random Packets (Seed 1) Utilizing AFIT ACL - Original
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Processing Time for Packet Headers Randomly Generated (Seed 2)
Utilizing AFIT ACL 101 - Original
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Figure 29. PT for Random Packets (Seed 2) Utilizing AFIT ACL - Original

Processing Time for Packet Headers Randomly Generated (Seed 3)
Utilizing AFIT ACL101 - Original
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Figure 30. PT for Random Packets (Seed 3) Utilizing AFIT ACL - Original
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Figure 31. PT for DISA Packets Utilizing AFIT ACL - Original

Processing Time for Packet Headers Destined for AFIT
Utilizing AFIT ACL101 - Optimization Trial
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Figilre 32. PT for AFIT Packets Utilizing AFIT ACL - Optimization Trial
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Processing Time for Packet Headers Randomly Generated (Seed 1)
Utilzing AFIT ACL101 - Optimization Trial
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Figure 33. PT for Random Packets (Seed 1) Utilizing AFIT ACL - Optimization Trial

Processing Time for Packet Headers Randomly Generated (Seed 2)
Utilizing AFIT ACL101 - Optimization Trial
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Figure 34. PT for Random Packets (Seed 2) Utilizing AFIT ACL - Optimization Trial
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Processing Time for Packet Headers Randomly Generated (Seed 3)
Utilizing AFIT ACL101 - Optimization Trial
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Figure 35. PT for Random Packets (Seed 3) Utilizing AFIT ACL - Optimization Trial

Processing Time for Packet Headers Destined for DISA
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Figure 36. PT for DISA Packets Utilizing AFIT ACL - Optimization Trial
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Processing Time for Packet Headers Destined for AFIT
Utilizing AFIT ACL101 - Modification.
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Figure 37. PT for AFIT Packets Utilizing AFIT ACL - Modification

Processing Time for Packet Headers Randomly Generated (Seed 1}
Utilizing AFIT ACL101 - Modification

10000
ICMP P Tep
1000
-
c
=
Q
© 400
° P
X
Q
(-]
o ltcp  UDP)
10 i TcP
1 rrrrrrrrrrrrrrr Tt rrrrrrrrrrrrrrrr1rrirTr T
b D o © D O N NS A ® O N

Processing Time (us)

Figure 38. PT for Random Packets (Seed 1) Utilizing AFIT ACL — Modification
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Processing Time for Packet Headers Randomly Generated (Seed 2)
Utilizing AFIT ACL101 - Modification
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Figure 39. PT for Random Packets (Seed 2) Utilizing AFIT ACL - Modification

Processing Time for Packet Headers Randomly Generated (Seed 3)
Utilizing AFIT ACL101 - Modification
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Figure 40. PT for Random Packets (Seed 3) Utilizing AFIT ACL - Modification
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Processing Time for Packet Headers Destined for DISA
Utilizing AFIT ACL101 - Modification
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Figure 41. PT for DISA Packets Utilizing AFIT ACL - Modification
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Figure 42. PT for DISA Packets Utilizing DISA ACL - Original
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Processing Time for Packet Headers Randomly Generated (Seed 1)
Utilizing DISA ACL101 - Original
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Figure 43. PT for Random Packets (Seed 1) Utilizing DISA ACL - Original
Processing Time for Packet Headers Randomly Generated (Seed 2)
Utilizing DISA ACL101 - Original
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Figure 44. PT for Random Packets (Seed 2) Utilizing DISA ACL - Original
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Processing Time for Packet Headers Randomly Generated (Seed 3)
Utilizing DISA ACL101 - Original
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Figure 45. PT f(l)r Random Packets (Seed 3) Utilizing DISA ACL - Original
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Figure 46. PT for AFIT Packets Utilizing DISA ACL - Original
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Processing Time for Packet Headers Destined for DISA
Utilizing DISA ACL101 - Optimization Trial
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Figure 47. PT for DISA Packets Utilizing DISA ACL - Optimization Trial

Processing Time for Packet Headers Randomly Generated {Seed 1)
Utilizing DISA ACL101 - Optimization Trial
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Figure 48. PT for Random Packets (Seed 1) Utilizing DISA ACL - Optimization Trial
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Processing Time for Packet Headers Randomly Generated (Seed 2}
Utilizing DISA ACL101 - Optimization Trial
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Figure 49. PT for Random Packets (Seed 2) Utilizing DISA ACL - Optimization Trial

Processing Time for Packet Headers Randomly Generated {Seed 3}
Utilizing DISA ACL101 - Optimization Trial
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Figure 50. PT for Random Packets (Seed 3) Utilizing DISA ACL - Optimization Trial
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Processing Time for Packet Headers Destined for AFIT
Utilizing DISA ACL101 - Optimization Trial
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Figure 51. PT for AFIT Packets Utilizing DISA ACL - Optimization Trial

Processing Time for Packet Headers Destined for DISA
Utilizing DISA ACL101 - Modification
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Figure 52. PT for DISA Packets Utilizing DISA ACL - Modification
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Processing Time for Packet Headers Randomly Generated (Seed 1)
Utilizing DISA ACL101 - Modification
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Figure 53. PT for Random Packets (Seed 1) Utilizing DISA ACL - Modification

Processing Time for Packet Headers Randomly Generated {Seed 2)
Utilizing DISA ACL101 - Modification
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Figure 54. PT for Random Packets (Seed 2) Utilizing DISA ACL — Modification
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Processing Time for Packet Headers Randomly Generated {Seed 3)
Utilizing DISA ACL101 - Modification
10000
ICMP P
TCP UpP
1000
€
3
3
- 100
2
g UDP
o
10 TCP
1 ™™ r 1T 1 itrrorrrrrrrrryrr0rrrro 7T T 1 1T 1T 1%
Uz 6 QA 9 N oD L) o B N\ N
PN ARNCEPN NSRRI AR NN N
Processing Time (is)

Figure 55. PT for Random Packets (Seed 3) Utilizing DISA ACL — Modification

Processing Time for Packet Headers Destined for AFIT
Utilizing DISA ACL101 - Modification
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Figure 56. PT for AFIT Packets Utilizing DISA ACL - Modification
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